
Graz University of Technology

And University of Porto

ECAI – 21st European Conference on Artificial Intelligence
August, 18 - 22, 2014 – Prague, Czech Republic

Generation of Relevant Spreadsheet Repair Candidates
Birgit Hofer, Rui Abreu, Alexandre Perez and Franz Wotawa

Abstract

Locating and fixing faults in spreadsheets is important. A state-of-the-art technique uses genetic programming for generating
repair candidates, but this technique computes too many repair candidates which hinders real-world application. Therefore, we
propose an approach that uses distinguishing test cases to narrow down the number of repair candidates.

References
[1] B. Hofer, and F. Wotawa: „Mutation-based spreadsheet debugging.“ International Workshop on Program

Debugging (IWPD) – ISSRE (Supplemental Proceedings) , pp. 132–137, 2013.
[2] R. Abraham, and M. Erwig: “GoalDebug: A spreadsheet debugger for end users”, International Conference

on Software Engineering (ICSE ’07 - Proceedings), pp. 251–260, 2007.
[3] M. Nica, S. Nica, and F. Wotawa: “On the use of mutations and testing for debugging.” Software : Practice &

Experience 43(9), pp. 1121–1142 , 2013.

2 MuSSCo (Mutation Supported Spreadsheet Correction)

Set of repair
candidates Constraints

Pick two mutants which have not (yet) been identified as equivalent or
undecidable and convert them into constraints. Stop when you cannot
find such mutants. Present remaining repair candidates to the user.

S
ol

ve

Expected
Output

Distinguishing
Test Case

Choose 2 Repair Candidates
and Convert them

Ask user (test oracle)

Fi
lte

r o
ut

3 Computing Distinguishing Test Cases

Spreadsheet
S1

Spreadsheet
S2

Input cells
I

Output cells
O

The selected repair candidates are converted into constraints.
Thereby, all variables of Spreadsheet S1 get the postfix “_S1” and all
variables of Spreadsheet S2 “_S2” in order to distinguish them. The
input cells of the spreadsheets are not encoded into constraints since
the solver should find values for these cells. To ensure that S1 and S2
have the same input values, we add the corresponding constraint
to the constraint system. In addition, we add a constraint ensuring
that at least one output cell has a different value for S1 and S2.
For such a constraint system, a solver could either return a solution
(a distinguishing test case), no solution (in case of equivalence) or
unknown (when the solver cannot decide if there exists a solution for
the given constraint system).

Constraints
Equivalent

A distinguishing test case [3] for two spreadsheets leads to at least
one different output for the same input.

1 Spreadsheet Repair

Spreadsheets are used in nearly every company and important
decisions are often based on spreadsheets. Unfortunately, they
often contain errors. Locating and correcting faults in
spreadsheets can be time consuming and frustrating. Therefore
several approaches have been proposed which automatically create
repair candidates, e.g. Repair by Genetic Programming [1] and
GoalDebug [2].

Unfortunately, these approaches often compute a large set of repair
candidates. A large set often overwhelms a user. Therefore, we
propose an approach which automatically narrows down the
number of repair candidates. This is done with the help of
distinguishing test cases [3]. The user only has to indicate the
expected output for the automatically generated distinguishing input.

4 Example

Initial situation: A spreadsheet where a wrong output is observed

Repair suggestions: Repair Tools (e.g. [1,2]), often create several
solutions that lead to the desired output.

MuSSCO: Generation of a distinguishing test case

Input cells

Formula cells

Output cell Should be 2160

Repair Candidate S1 Repair Candidate S2

Automatically
created input

Repair Candidate S2

User: Tells what output he/she expects

The result should
be 0 for this input

Repair Candidate S1

	Slide Number 1

