

Smelly Spreadsheet Structures: Structural Analysis of Spreadsheets to enhance Smell Detection

Defense of Master's Thesis

Patrick Koch

Supervisor Univ.-Prof. Dipl.-Ing. Dr.techn. Franz Wotawa

Outline

2

Why Structural Analysis of Spreadsheets?

Let us restate the question.

3

Motivation

Why spreadsheets?

- Intuitive to use
- Versatile
- Everyone used them once
- Everyone has access

Motivation

So that is why...

- 60% of PC-users use spreadsheets
- 7.4% of PC-time spent using spreadsheets
- Used by 95% of businesses for financial accounting

However...

- Only 15% of users are professionals
- Spreadsheets contain (a lot of) faults

Source:

5

Panko and Port: "End user computing: The dark matter (and dark energy) of corporate IT", HICSS 2012 Kevin Taylor: "An Analysis of Computer Use across 95 Organisations in Europe, North America and Australasia", 2007

A grave Example

	Α	В	С	D	E	F	G	Н	1	J	K	L	М	N	0	Р
1					Nun	iber of obs	ervations			Average						
2										Real GD	P growth			Infla	ation	
3						Debt	GDP			Debt	/GDP			Debt	GDP	
4		Country	Coverage	Total	30 or less	30 to 60	60 to 90	90 or abov	30 or less	30 to 60	60 to 90	90 or abov	30 or less	30 to 60	60 to 90	90 or abov
5	1	US	1791-2009	•	129	58	23	5	4.0	3.4	3.3	-1.8	1.1	1.8	2.3	6.1
6	2	UK	1831-2009	•	3	68	27	75	2.5	2.1	2.1	1.8	0.8	4.1	1.4	1.6
7	3	Sweden	1880-2009	9	79	40	11	0	2.9	2.9	2.7	n.a.	2.8	4.6	4.2	n.a.
8	4	Spain	1851-2009	•	26	53	47	29	1.5	3.2	1.3	2.2	10.5	5.5	2.3	0.5
9	5	Portugal	1880-2009	9	42	10	39	0	4.8	2.5	1.4	n.a.	8.8	3.3	0.9	n.a.
10	6	Norway	1880-2009	9	98	25	1	0	2.9	4.4	10.2	n.a.	4.4	-0.1	n.a.	n.a.
11	7	New Zeala	1932-2009)	9	33	17	19	2.5	2.9	3.9	3.7	2.6	7.4	5.0	2.8
12	8	Netherland	1880-2009)	17	50	32	8	4.1	2.8	2.4	2.0	6.4	1.5	0.0	-2.2
13	9	Japan	1886-2009)	47	42	11	11	5.2	3.7	3.9	0.7	6.3	2.1	3.2	-1.1
14	10	Italy	1880-2009)	26	12	39	49	5.4	4.9	1.9	0.7	5.6	11.1	10.6	13.1
15	11	Ireland	1949-2009)	8	14	32	7	4.4	4.5	4.0	2.4	2.9	4.8	7.3	5.3
16	12	Greece	1884-2009	9	13	11	11	56	4.0	3.3	4.8	2.5	13.3	20.8	12.3	2.8
17	13	Germany	1880-2009)	96	11	0	0	3.6	0.9	n.a.	n.a.	1.8	1.5	n.a.	n.a.
18	14	France	1880-2009)	26	21	19	36	5.1	2.7	2.8	1.9	5.2	5.0	1.5	0.9
19	15	Finland	1914-2009	•	69	18	6	3	3.2	3.0	4.3	1.9	10.6	5.4	13.2	32.7
20	16	Denmark	1880-2009)	57	16	17	0	3.2	1.7	2.4	n.a.	2.5	4.7	3.3	n.a.
21	17	Canada	1925-2009)	3	52	23	7	1.9	4.5	3.0	2.2	2.2	4.1	0.6	6.0
22	18	Belgium	1836-2009	•	37	60	32	33	3.0	2.4	2.1	3.3	0.9	1.5	3.0	3.2
23	19	Austria	1880-2009		43	32	35	0	4.3	3.0	2.3	n.a.	5.3	2.4	0.7	n.a.
24	20	Australia	1902-2009)	38	33	28	9	3.1	4.1	2.9	3.5	5.9	2.9	4.7	3.3
25																
26				1767	688	466	315	=SUM(H5	3.7	3.1	3.5	1.6	5.5	5.3	4.9	5.7
27		Minimum							1.5	0.9	1.3	-1.8	0.8	-0.1	0.0	-2.2
28		Maximum							5.4	4.9	10.2	3.7	13.3	20.8	13.2	32.7

Motivation

What can we do about it?

Techniques to automatically ...

- Avoid Faults
- Find Faults
- Fix Faults

Future Work

7

8

Structurebased Smells

Spreadsheet QA Techniques

9

Future Work

Structure-

based

Smells

Outline

We want to automatically...

- Detect structures
- Infer relations
- Provide abstractions

In order to...

- Improve QA techniques
- Introduce new techniques

Which structures to detect?

Structural Analysis Process: Example Worksheet

Values

	А	В	С	D	E	F
1		Europe				
2	Models	2012	2013	2014	2015	Total
3	Honda	30	27	28	32	117
4	Mazda	10	12	9	7	38
5	Fiat	9	12	13	15	49
6	Total	49	51	50	54	204

Formulas

	А	В	С	D	E	F
1		Europe				
2	Models	2012	2013	2014	2015	Total
3	Honda	30	27	28	32	=SUM(B3:E3)
4	Mazda	10	12	9	7	=SUM(B4:E4)
5	Fiat	9	12	13	15	=SUM(B5:E5)
6	Total	=SUM(B3:B5)	=SUM(C3:C5)	=SUM(D3:D5)	=SUM(E3:E5)	=SUM(F3:F5)

Which structures to detect?

	A	В	С	D	E	F
1		Europe				
2	Models	2012	2013	2014	2015	Total
3	Honda	30	27	28	32	=SUM(B3:E3)
4	Mazda	10	12	9	7	=SUM(B4:E4)
5	Fiat	9	12	13	15	=SUM(B5:E5)
6	Total	=SUM(B3:B5)	=SUM(C3:C5)	=SUM(D3:D5)	=SUM(E3:E5)	=SUM(F3:F5)
7						
8				formula		

Future Work

Which structures to detect?

	А	В	С	D	E	F
1		Europe				
2	Models	2012	2013	2014	2015	Total
3	Honda	30	27	28	32	=SUM(B3:E3)
4	Mazda	10	12	9	7	=SUM(B4:E4)
5	Fiat	9	12	13	15	=SUM(B5:E5)
6	Total	=SUM(B3:B5)	=SUM(C3:C5)	=SUM(D3:D5)	=SUM(E3:E5)	=SUM(F3:F5)
7						
8				input		

Future Work

Which structures to detect?

	А	В	С	D	E	F
1		Europe				
2	Models	2012	2013	2014	2015	Total
3	Honda	30	27	28	32	=SUM(B3:E3)
4	Mazda	10	12	9	7	=SUM(B4:E4)
5	Fiat	9	12	13	15	=SUM(B5:E5)
6	Total	=SUM(B3:B5)	=SUM(C3:C5)	=SUM(D3:D5)	=SUM(E3:E5)	=SUM(F3:F5)
7						
8				block		

Which structures to detect?

	А	В	С	D	E	F
1		Europe				
2	Models	2012	2013	2014	2015	Total
3	Honda	30	27	28	32	=SUM(B3:E3)
4	Mazda	10	12	9	7	=SUM(B4:E4)
5	Fiat	9	12	13	15	=SUM(B5:E5)
6	Total	=SUM(B3:B5)	=SUM(C3:C5)	=SUM(D3:D5)	=SUM(E3:E5)	=SUM(F3:F5)
7						
8				header		

Future Work

Structurebased Smells

Structural Analysis Process: Grouping

Resulting Formula Groups

	А	В	С	D	E	F
1		Europe				
2	Models	2012	2013	2014	2015	Total
3	Honda	30	27	28	32	=SUM(B3:E3)
4	Mazda	10	12	9	7	=SUM(B4:E4)
5	Fiat	9	12	13	15	=SUM(B5:E5)
6	Total	=SUM(B3:B5)	=SUM(C3:C5)	=SUM(D3:D5)	=SUM(E3:E5)	=SUM(F3:F5)

Structural Analysis Process: Grouping

Resulting Reference-based Groups

	Α	В	С	D	E	F
1		Europe				
2	Models	2012	2013	2014	2015	Total
3	Honda	30	27	28	32	=SUM(B3:E3)
4	Mazda	10	12	9	7	=SUM(B4:E4)
5	Fiat	9	12	13	15	=SUM(B5:E5)
6	Total	=SUM(B3:B5)	=SUM(C3:C5)	=SUM(D3:D5)	=SUM(E3:E5)	=SUM(F3:F5)

	Α	В	С	D	E	F
1		Europe				
2	Models	2012	2013	2014	2015	Total
3	Honda	30	27	28	32	=SUM(B3:E3)
4	Mazda	10	12	9	7	=SUM(B4:E4)
5	Fiat	9	12	13	15	=SUM(B5:E5)
6	Total	=SUM(B3:B5)	=SUM(C3:C5)	=SUM(D3:D5)	=SUM(E3:E5)	=SUM(F3:F5)

Structural Analysis Process: Blocking

Resulting Block

	А	В	С	D	E	F
1		Europe				
2	Models	2012	2013	2014	2015	Total
3	Honda	30	27	28	32	=SUM(B3:E3)
4	Mazda	10	12	9	7	=SUM(B4:E4)
5	Fiat	9	12	13	15	=SUM(B5:E5)
6	Total	=SUM(B3:B5)	=SUM(C3:C5)	=SUM(D3:D5)	=SUM(E3:E5)	=SUM(F3:F5)

Structural Analysis Process: Header Assignation

Resulting Header-Layers

	А	В	С	D	E	F
1		Europe				
2	Models	2012	2013	2014	2015	Total
3	Honda	30	27	28	32	=SUM(B3:E3)
4	Mazda	10	12	9	7	=SUM(B4:E4)
5	Fiat	9	12	13	15	=SUM(B5:E5)
6	Total	=SUM(B3:B5)	=SUM(C3:C5)	=SUM(D3:D5)	=SUM(E3:E5)	=SUM(F3:F5)

Resulting Layer Headers

	A	В	С	D	E	F
1		Europe				
2	Models	2012	2013	2014	2015	Total
3	Honda	30	27	28	32	=SUM(B3:E3)
4	Mazda	10	12	9	7	=SUM(B4:E4)
5	Fiat	9	12	13	15	=SUM(B5:E5)
6	Total	=SUM(B3:B5)	=SUM(C3:C5)	=SUM(D3:D5)	=SUM(E3:E5)	=SUM(F3:F5)

Structural Analysis Process: Challenges

- 1. Prerequisites for analysis not fulfilled
 - No formula cells
 - No available header cells
- 2. No consistent guideline for spreadsheet layout
 - Ambiguous spreadsheet structures
 - Inconsistent positioning of individual components
 - Hidden columns and rows
- 3. Inconsistent use of spreadsheet elements
 - Formula used as header
 - References to valid header cells

26

Outline

- Based on EUSES and ENRON spreadsheet corpora
- Filtering procedure to determine valid candidates

Resulting filtered evaluation corpora

	Total	Fit for evaulation	Difference	
EUSES	4,495	1,659	2,836	
ENRON	16,929	6,691	9,238	

28

Evaluation

- Evaluation via comparison with manual inspection
- Detection rates of high-level structures (Blocks, Headers)
- Sample selection based on processed and available metrics

Structural

Analysis

Process

Motivation

Structure

based

Smells

Evaluation

Future Work

- EUSES: five typical spreadsheets from each of nine different categories
- ENRON: 30 most relevant spreadsheets based on version history

Evaluation: Evaluation Process

Manual inspection

Automatic detection by prototype implementation

Comparison of expected and detected structures

Evaluation: Results EUSES

Future Work

Structure-

based

Smells

Evaluation: Results ENRON

Evaluation: Main Findings

- 1. 99% of the blocks could be detected
- 2. >80% of expected headers could be detected

Structural

Analysis

Process

Motivation

Evaluation

Structure

based

Smells

Future Work

3. Most of the detected structures inferred featuring complete dimensions

Outline

Structure-based Smells

- Application of structural information
- Focus on enhancement of Spreadsheet Smells

Structural

Analysis

Process

Structure

based

Smells

36

Structure-based Smells: Updated Smells

Update opportunities:

- Focus analysis methods on spreadsheet structures
- Analyse group formulas instead of cell fromulas
- Analyse group references instead of cell references

Structural

Analysis

Process

Motivation

Structure

based

Smells

Evaluation

Future Work

Structure-based Smells: Updated Smells

Future Work

Structure-

based Smells

Structure-based Smells: Updated Smells

Example: Sliding-Window Smells

- Detects anomalies in sliding windows
- Update: limit windows to structures

	А	В	C
1		Europe	
2	Models	2012	2013
3	Honda	30	27
4	Mazda	1000	12
5	Fiat	9	12
6	Total	=SUM(B3:B5)	=SUM(C3:C5)

38

Structure-based Smells: Novel Smells

Smell origins:

- Similar existing smells
- Analyse group formulas instead of cell fromulas
- Analyse group references instead of cell references

39

Structural

Analysis

Process

Structure

based

Smells

Structure-based Smells: Novel Smells

Future Work

Structure-

based Smells

Spreadsheet Smells: Formula Smells

Example: Inconsistent Formula Group Reference

Size mismatch between groups and group references

	А	В	С	D	E	F
1		Europe				
2	Models	2012	2013	2014	2015	Total
3	Honda	30	27	28	32	=SUM(B3:E3)
4	Mazda	1000	12	9	7	=SUM(B4:E4)
5	Fiat	9	12	13	15	=SUM(B5:E5)
6	Total	=SUM(B3:B4)	=SUM(C3:C4)	=SUM(D3:D4)	=SUM(E3:E4)	=SUM(F3:F4)

Structure

based

Smells

Outline

Future Work

- Further improve spreadsheet QA techniques
 - Unit inference approaches
 - Introduce group-editing operations
 - Introduce knowledge-based approaches
- Expand structural analysis approach
 - Better adapt to special circumstances
 - Introduce new group types
 - Further analyze inter-group dependencies

Structural

Analysis

Process

Evaluation

Motivation

Structure

based

Smells

Future Work

What we want to detect

	А	В	С	D	E	F
1		Europe				
2	Models	2012	2013	2014	2015	Total
3	Honda	30	27	28	32	=SUM(B3:E3)
4	Mazda	10	12	9	7	=SUM(B4:E4)
5	Fiat	9	12	13	15	=SUM(B5:E5)
6	Total	=SUM(B3:B5)	=SUM(C3:C5)	=SUM(D3:D5)	=SUM(E3:E5)	=SUM(F3:F5)
7						
8	header		input		formula	

Summary

Evaluation: Results EUSES

44

Future Work

Structure-

based

Smells