

1

Improvements for Spectrum-based Fault Localization in Spreadsheets

Elisabeth Getzner

June 18, 2015

- Outline
 - 1. Motivation
 - 2. Fault Localization in Spreadsheets
 - 3. Improvements for SFL
 - 4. Evaluation
 - 5. Conclusion

Outline

1. Motivation

2. Fault Localization in Spreadsheets

3. Improvements for SFL

4. Evaluation

5. Conclusion

Motivation

Spreadsheets are ...

- used privately and in corporate environment
- used for critical computations and decisions¹
- faulty! (~88 % of all spreadsheets)²

Quality assurance in spreadsheets:

- Fault detection, localization, repair
 - 1 James Kwak. The Importance of Excel. The Baseline Scenario. @. Feb. 9, 2013. URL: http://baselinescenario.com/2013/02/09/the-importance-of-excel/ (visited on 03/31/2015)
 - 2 Raymond R. Panko. "Spreadsheet Errors: What We Know. What We Think We Can Do". In: Proceedings of the European Spreadsheet Risks Interest Group (EuSpRIG). 2000, pp. 7–17. URL: http://arxiv.org/abs/0802.3457 (visited on 04/08/2014)

Example - Bonus Calculation

	А	В	С	D	E
1		Hours	Salary	Bonus	Sum
2	Jones	17	272	26	298
3	Smith	13	208	0	208
4	Rogers	20	320	40	360
5	Total		800	66	866

	A	В	С	D	E
1		Hours	Salary	Bonus	Sum
2	Jones	17	=B2*16	=IF(B2>15; C3 /8;0)	=SUM(C2:D2)
3	Smith	13	=B3*16	=IF(B3>15; C3 /8;0)	=SUM(C3:D3)
4	Rogers	20	=B4*16	=IF(B4>15; C4 /8;0)	=SUM(C4:D4)
5	Total		=SUM(C2:C4)	=SUM(D2:D4)	=SUM(E2:E4)

Figure: Faulty bonus calculation

Example - Bonus Calculation

	А	В	С	D	E
1		Hours	Salary	Bonus	Sum
2	Jones	17	272	26	298
3	Smith	13	208	0	208
4	Rogers	20	320	40	360
5	Total		800	66	866

	A	В	С	D	E
1		Hours	Salary	Bonus	Sum
2	Jones	17	=B2*16	=IF(<mark>B2</mark> >15; C3 /8;0)	=SUM(C2:D2)
3	Smith	13	=B3*16	=IF(B3>15; C3 /8;0)	=SUM(C3:D3)
4	Rogers	20	=B4*16	=IF(B4>15; C4 /8;0)	=SUM(C4:D4)
5	Total		=SUM(C2:C4)	=SUM(D2:D4)	=SUM(E2:E4)

Figure: D2 is faulty (26 instead of 34)

Outline

1. Motivation

2. Fault Localization in Spreadsheets

3. Improvements for SFL

4. Evaluation

5. Conclusion

Spectrum-based Fault Localization I

Goal: Find root cause of unexpected spreadsheet behavior

- Trace-based (as opposed to model-based)
 - Analyze cell dependencies
 - Return fault likelihoods for each cell
- Process:
 - 1. Testing Decisions
 - 2. Analyze dependencies (CONEs)
 - 3. Compute fault likelihood (similarity coefficient)

- Spectrum-based Fault Localization II
 - 1. Testing Decisions (TD)
 - User provided
 - Judging the value of cells

• Expected (
$$\checkmark$$
) = TD^+

Unexpected (X) = TD⁻

	А	В	С	D	E
1		Hours	Salary	Bonus	Sum
2	Jones	17	272	26	298
3	Smith	13	208	0	208
4	Rogers	20	320	40	360
5	Total		2 800	66	X 866

Spectrum-based Fault Localization III

- 2. Create CONEs from the testing decisions
 - CONE(c) = Set of cells containing c and all cells referenced by c
 - directly (in formula) and
 - indirectly (recursive)
 - CONE(E5) = {E5,E2,E3,E4,D2,D3,D4,C2,C3,C4}

	A	В	С	D	E
1		Hours	Salary	Bonus	Sum
2	Jones	17	272	26	298
3	Smith	13	208	0	208
4	Rogers	20	320	40	360
5	Total		800	66	X 866

Spectrum-based Fault Localization IV

- 3. Similarity coefficient correlates
 - No. TD⁺ and the
 - No. TD⁻ a cell contributes to

Using the **Ochiai**¹ coefficient:

	Α	В	C	D	E		Bank	Colle
1		Hours	Salary	Bonus	Sum] .	Tank	Cells
2	Jones	17	0.7	1	1		1	D2 F2 D4 F4 F5
3	Smith	13	0.6	0.7	0.7		0	$D_{2}, D_{2}, D_{3}, D_{4}, D_{4}, D_{5}$
4	Rogers	20	0.7	1	1		2.	C2,D3,E3,C4
5	Total		0	0	1		3.	C3

 R. Abreu, P. Zoeteweij, and A.J.C. van Gemund. "An Evaluation of Similarity Coefficients for Software Fault Localization". In: 12th Pacific Rim International Symposium on Dependable Computing, 2006. PRDC '06. Dec. 2006, pp. 39–46. DOI: 10.1109/PRDC.2006.18

SFL Properties

Advantages

- Fast
- Low user requirement
- Intuitive cell ranking

- 1			А		В		С		D		E	
	1	Г		H	lours	S	alary	B	onus	S	um	
	2	Jo	nes		17		272		26		298	
	3	S			13		208		0	Ø	208	
	4	R	ogers		20		320		40		360	
$(\land$	5	T	otal			Z	800		66	X	866	
							6		0		-	
1			A		В		L		D		E	
	7	1			Hour	s	Sala	ry	Bon	JS	Sur	n
	- [2	Jones		17		0.7		1			
		3	Smith		13		0.6		0.7		0.7	,
		4	Rogers		20		0.7		1		1	
		5	Total				0		0		1	

Issues

- Multiple fault interference
- Low rank of the faulty cell
 - Oracle mistakes
 - Coincidental correctness

Large Ties

- Lack of prioritization
- Difficult to compare

Outline

1. Motivation

2. Fault Localization in Spreadsheets

3. Improvements for SFL

4. Evaluation

5. Conclusion

Improvements for SFL

13

Improvements for SFL

13

Grouping I

Goal: Group cell areas with duplicate formulas to a single unit

Formulas must be identical in R1C1

	1	2	3	4	5
1		Hours	Salary	Bonus	Sum
2	Jones	17	=RC[-1]*16	=IF(RC[-2]>15; R[1]C[-1] /8;0)	=SUM(RC[-2]:RC[-1])
3	Smith	13	=RC[-1]*16	=IF(RC[-2]>15; RC[-1] /8;0)	=SUM(RC[-2]:RC[-1])
4	Rogers	20	=RC[-1]*16	=IF(RC[-2]>15; RC[-1] /8;0)	=SUM(RC[-2]:RC[-1])
5	Total		=SUM(R[-3]C:R[-1]C)	=SUM(R[-3]C:R[-1]C)	=SUM(R[-3]C:R[-1]C)

Figure: Four groups with the faulty cell isolated

Post- vs. Pre-Processing

Grouping II

- Post-Process Grouping
 - Analyze spreadsheet after SFL is applied
 - Groupable cells must have the same similarity coefficient
- Pre-Process Grouping
 - Analyze spreadsheet before SFL is applied
 - Copy testing decisions to all cells in group
 - Cells can only be grouped if they work on the same type of data

Pre-Process Grouping Example

Type-safe group is an area containing

- Constants of the same type (i.e. int, string, ...)
- Formula cells
 - Share the same formula and
 - All references share same type

	1	2	3	4	5
1		Hours	Salary	Bonus	Sum
2	Jones	17	=RC[-1]*16	=IF(RC[-2]>15; R[1]C[-1]/8;0)	=SUM(RC[-2]:RC[-1])
3	Smith	13	=RC[-1]*16	=IF(RC[-2]>15; RC[-1] /8;0)	=SUM(RC[-2]:RC[-1])
4	Rogers	20	=RC[-1]*16	=IF(RC[-2]>15; RC[-1] /8;0)	=SUM(RC[-2]:RC[-1])
5	Total		=SUM(R[-3]C:R[-1]C)	=SUM(R[-3]C:R[-1]C)	=SUM(R[-3]C:R[-1]C)

Figure: Three groups, isolating the row with the faulty cell D2.

Tie Breaking I

Goal: Rank faulty cell higher than non-faulty cells

- Position- vs. Metric-based Tie-Breaking
- Position-based TB measures distances / path lengths between cells
 - COS (Cell Order Strategy): Euclidean distance from top-left corner A1
 - CDS (Cell Distance Strategy): Euclidean distance from nearest TD⁻
 - PLS (Path Length Strategy): Number of cell references to reach *TD*⁻

Tie Breaking II

- Metric-based TB analyzes formulas, using heuristics to find fault likelihood
 - OP, REF: Number of Operators / References
 - DR (Dispersion of References): Referenced cells/areas where coordinates do not overlap with the referencing cell → higher fault likelihood

	Α	В	С	D	E
1		Hours	Salary	Bonus	Sum
2	Jones	17	=B2*16	=IF(B2>15; C3 /8;0)	=SUM(C2:D2)
3	Smith	13	=B3*16	=IF(B3>15; C3 /8;0)	=SUM(C3:D3)
4	Rogers	20	=B4*16	=IF(B4>15; C4 /8;0)	=SUM(C4:D4)
5	Total		=SUM(C2:C4)	=SUM(D2:D4)	=SUM(E2:E4)

 CS, CL (Cone Size/Length): Number of cells needed to compute the cell value

Outline

1. Motivation

2. Fault Localization in Spreadsheets

3. Improvements for SFL

4. Evaluation

5. Conclusion

Measuring Success I

Compare position of faulty cell in the ranking for SFL alone and with our strategies

- Worst Case Scenario
 - Faulty cell *c_f* is reached last in the tie

$$\mathsf{RelRank}_{\mathrm{worst}} = \frac{|\{c \in \mathsf{Cells} : SC(c) \geq SC(c_f)\}|}{|C_F \subseteq \mathsf{Cells}|}$$

- *C_F* = Formula cells in the Spreadsheet
- SC = Similarity Coefficient
- Used for cumulative histogram
- Emphasizes even small improvements

Measuring Success II

- Average Case Scenario
 - User inspects half of the equally ranked, non-faulty cells before reaching the faulty cell
 - Comparison to "pure chance"
 - Risk analysis with Impact

 $\mathit{Impact} = \mathsf{RelRank}^{\mathit{before}}_{\mathrm{avg}} - \mathsf{RelRank}^{\mathit{after}}_{\mathrm{avg}}$

- positive Impact: fault is ranked in the first half of the tie
- negative Impact: fault is ranked in the second half

Evaluation Corpora

- 1. EUSES: many, diverse, real spreadsheets
- 2. INFO: student submissions for an Excel course
- 3. BURNETT: user study with two small spreadsheets

Feature	Euses	Info	BURNETT
Spreadsheet size	diverse	large	small
TD origin	injected	injected	authentic
Fault origin	injected	authentic	injected
Grouping	**	***	-
Tie-Breaking		**	*

Grouping Strategies (INFO)

Relative Rank (RelRankworst)

Figure: Cumulative Histogram for the $\mathsf{RelRank}_{worst}$ in INFO

Grouping Strategies (EUSES)

Relative Rank (RelRankworst)

Figure: Cumulative Histogram for the $\mathsf{RelRank}_{worst}$ in Euses

Impact Analysis

Figure: Boxplot on the Impact on the INFO corpus

Position-based Tie-Breaking

Relative Rank (RelRankworst)

Figure: Cumulative Histogram for the $\mathsf{RelRank}_{worst}$ in INFO

Metric-based Tie-Breaking (OP, REF, DR)

Relative Rank (RelRankworst)

Figure: Cumulative Histogram for the $\mathsf{RelRank}_{worst}$ in INFO

Metric-based Tie-Breaking (CS, CL)

Relative Rank (RelRankworst)

Figure: Cumulative Histogram for the $\mathsf{RelRank}_{worst}$ in INFO

Tie-Breaking Impact

Figure: Boxplot on the Impact on the INFO corpus

Outline

1. Motivation

2. Fault Localization in Spreadsheets

3. Improvements for SFL

4. Evaluation

5. Conclusion

Conclusion

- Conclusion
 - SFL issues (e.g. large ties)
 - Improvement techniques

- Realistic representation of the tie (Grouping)
- Rank faulty cell high within tie (Tie-Breaking)
 - Correlation to TDs (CDS)
 - Specialized metrics offer lower risk (DR)
- Need authentic faults/TDs to evaluate
 - Structural properties influence result
 - 2 new, publicly available spreadsheet corpora¹
- Future Work
 - Improving Pre-Process Grouping
 - Combination of techniques

spreadsheets.ist.tugraz.at

