
716.117 Diploma Seminar

SMT Solver Comparison

Andrea Höfler
andrea.hoefler@student.tugraz.at

Institute for Software Technology (IST)
Graz University of Technology

Inffeldgasse 16B/II,
8010 Graz, Austria

Supervisors: Univ.-Prof. Dipl.-Ing. Dr.techn. Franz Wotawa,
Dipl.-Ing. Dr.techn. Birgit Hofer

Graz, July 2014

Abstract

Over the past years Satisfiability Modulo Theories (SMT) solvers have be-
come a very popular tool to solve different kinds of problems. Due to a high
level operation language and the usage of state-of-the-art Boolean Satisfia-
bility (SAT) solvers, SMT solvers can not only solve SAT problems but even
more complex ones. Recent research introduced the usage of SMT solvers
for model-based debugging of spreadsheets. A framework was developed
to compare the performance and runtime of different modern solvers when
debugging spreadsheets. This paper builds upon this research by giving a
brief description of SMT solvers and by comparing different notable solvers,
regarding their functionality, only considering solvers able to handle real
numbers. Surprisingly not many SMT solvers fall into that category. That
is why, within the scope of this work, we pick out the suitable SMT solvers
and suggest an efficient method to integrate them into the framework.

Contents

1 Introduction 1

2 Satisfiability Modulo Theories Solver 3
2.1 First-order Logic . 3
2.2 Satisfiability Modulo Theories Problem 5
2.3 Theories . 5

2.3.1 Basic Theory Definitions 7
2.3.2 Uninterpreted functions with equality 7
2.3.3 Linear arithmetic . 8
2.3.4 Difference arithmetic 8
2.3.5 Non-linear arithmetic 10
2.3.6 Bit-vectors . 11
2.3.7 Arrays . 11
2.3.8 Quantified Theories 11
2.3.9 Theory Combination 11

2.4 Famous Problems expressed as SMT 13
2.5 Resolution of SMT . 15
2.6 DPLL and DPLL(T) . 18

2.6.1 DPLL paradigm . 19
2.6.2 DPLL(T) paradigm 21

3 SMT Solver Comparison 24
3.1 Z3 . 24
3.2 CVC4 . 28
3.3 MathSAT 5 . 30
3.4 SMTInterpol . 32
3.5 veriT . 34

i

3.6 Yices 2 . 35

4 Constraint Modeling Languages 37
4.1 MiniZinc . 37
4.2 SMT-LIB v2.0 . 38

5 Conclusions and Future Work 42

List of Figures 44

List of Tables 45

Acronyms 46

Bibliography 48

ii

Chapter 1

Introduction

Spreadsheet programs, like Microsoft’s Excel, OpenOffice’s Calc or Apple’s
Numbers, are some of the most used end-user programs. They are vital
for many businesses, but also commonly used by private people. Due to
their vast functionality these programs can be considered as programming
environments for non-professional programmers. With help of spreadsheet
tools people can easily create very complex spreadsheets, sometimes con-
taining thousands of formulas. Since these programs are so vastly used, it
would be preferable that spreadsheets are free from errors. This however, is
rarely the case. Even though spreadsheets are so popular, it is very difficult
to automatically debug them. There are many different approaches that
try to handle spreadsheet debugging, yet, they are hardly used in practice.
Strategies that try to debug spreadsheets with the help of constraint solvers
are restricted through the limited support of real numbers. Furthermore, if
large spreadsheets are considered, it is difficult to debug the spreadsheets
within a reasonable time span. That is where SMT solvers come in handy,
to get rid of these limitations. SMT solvers can handle real numbers and
since they operate modulo a theory, they can easily be expanded to handle
many different data types. To determine how well SMT solvers perform in
comparison to constraint solvers when debugging spreadsheets, we like to
build on some recent research done by a team at the Graz University of Tech-
nology. They developed a framework, which compares different SMT- and
constraint solvers based on their execution time and performance when de-
bugging spreadsheets [1]. Until now they integrated Z3, an SMT solver, and
two constraint solvers, called Choco and MINION. Their research showed

Chapter 1 Introduction

that Z3, in combination with the MCSes-U algorithm, exceeds the constraint
solvers concerning modeling abilities and execution time. On average Z3 is
six times faster than Choco and MINION. Whereas, the performance dif-
ference between Choco and MINION is minimal. However, their work was
mainly focused on integrating the constraint solvers and it remains unclear,
whether other SMT solvers would yield similar performance as Z3 when de-
bugging spreadsheets. That is why, next to providing a general introduction
to the basics of SMT solvers, we will offer a comparison of different state-of-
the-art SMT solvers, regarding their functionality, only considering solvers
that are able to operate with real numbers. Furthermore, a translation of
a spreadsheet into a spreadsheet debugging problem results in a non-linear
arithmetic problem. That is why, it is equally important that the SMT
solvers support the theory of non-linear arithmetic. Moreover, the spread-
sheet debugging algorithm MCSes-U that performed best in combination
with Z3 depends on the solvers’ functionality to extract unsatisfiable cores.
Therefore, another important requirement is the solvers support of unsat-
isfiable core extraction. Surprisingly we found that not many SMT solvers
support real numbers and from those which do, even less support non-linear
arithmetic and unsatisfiable core extraction. That is why within the scope
of this work we pick out the suitable SMT solvers and introduce an efficient
way to integrate them into the framework, to ease the way for a future work
where we will integrate them to compare their performance and execution
time when debugging spreadsheets.

The following pages of this paper are organized as follows: Chapter 2 deals
with the principles of SMT solvers. We give a detailed description of their in-
put language, the problems they are designed to solve and how they operate
to solve these problems. Chapter 3 consists of a comparison of state-of-the-
art SMT solvers that support real numbers. We give a short summary of
their basic functionality as well as a detailed description of their technical
features. In Chapter 4 we state two different modeling languages for SMT
solvers and show with the aid of an example how their syntax differs from
each other. Finally, we conclude the paper in Chapter 5.

2

Chapter 2

Satisfiability Modulo
Theories Solver

As the name Satisfiability Modulo Theories (SMT) suggests, SMT solvers
have a close relation to Boolean Satisfiability (SAT). In fact, most SMT
solvers use a state-of-the-art SAT solver to evaluate whether an SMT in-
stance is satisfiable or not. That is why recent breakthroughs in SAT solver
development also resulted in a great advancement in the relevance of SMT
solvers, leading to the development of many different industrial applications
in the fields of software verification, model-based testing, model checking,
test-case generation and many more [30], [36].
Within this chapter we describe the basic technology of SMT solvers and
the kind of problems they are designed to solve.

2.1 First-order Logic

Generally speaking, SMT solvers determine whether a formula, in the lan-
guage of quantifier-free First-Order Logic (FOL), is satisfiable or not. Only
a few SMT solvers are able to handle quantifiers. That is why both quan-
tifiers, for all (∀) and there exists (∃), were omitted in the below definition
of FOL. For a complete definition of FOL we refer to Alessandro Farinelli’s
lecture notes on propositional and first-order logic [24]. Definitions 2.1 to
2.9, are based on Farinelli’s description of FOL [24].

Definition 2.1. Variables and Constants: The language of FOL consists
of variables with values of various types (f.i. Boolean, integer, real), as well

Chapter 2 Satisfiability Modulo Theories Solver

as constants;

Definition 2.2. Operators: Additionally, to the operators of Proposi-
tional Logic (PL), negation (¬), conjunction (∧), disjunction (∨), FOL
makes use of the equals operator (=);

Definition 2.3. Parentheses: Essentially each finite possible sentence
constructed by operators must be enclosed in parentheses. Many paren-
theses can be omitted though, due to operator priorities and thus improve
readability. Priorities from highest to lowest are: =,¬,∧,∨;

Definition 2.4. Predicates: Predicate symbols, also called relation sym-
bols, are most of the time denoted by uppercase letters. They have an
arity stating how many parameters a predicate takes. Basically, a predicate
is a statement that is either true or false, depending on the values of its
arguments. Predicates of arity 0 are equivalent with Boolean variables.

Example 2.1. Assuming, Person is a predicate symbol with arity 1, then
Person(x) would evaluate to true only if x really is a person.

Example 2.2. Assuming, On(Table, Pen) is a predicate with arity 2, then
in case the pen is on the table it follows that On(Table, Pen) would be true,
otherwise false.

Definition 2.5. Functions: On the contrary to predicate symbols, func-
tional symbols are mostly denoted by lowercase letters and also have an
arity. Functions of arity 0 are equal to constants.

Example 2.3. Assuming, add is a functional symbol, then add(x, y) may be
interpreted as: the sum of x and y. Meaning, add(x, y) returns the solution
of x+ y as a value.

Definition 2.6. Terms: Every variable and constant on its own is a term.
Furthermore, if f is a function with arity n and t1, ..., tn are terms, then
f(t1, ..., tn) is a term as well.

Definition 2.7. Formulas: Every Boolean variable is a formula. Further-
more, if P is a predicate with arity n and t1, ..., tn are terms, then P (t1, ..., tn)
is a formula as well. Terms linked by any operator are also formulas.

Definition 2.8. Sentences: A formula with no free variable is called a
sentence.

4

Chapter 2 Satisfiability Modulo Theories Solver

Definition 2.9. Atomic formulas: A formula containing no logical con-
nective and no bound variable is called an atomic formula or an atom.

2.2 Satisfiability Modulo Theories Problem

An SMT problem describes the problem of determining whether a formula
expressed in quantifier-free FOL is satisfiable, with respect to a background
theory. Typical examples of such theories are for instance: the theory of
uninterpreted functions with equality, the theory of linear arithmetic over
integers or reals, or the theories of different data structures like lists, arrays,
bit-vectors. Typical examples of such theories are the theory of uninter-
preted functions with equality, the theory of linear arithmetic over integers
or reals, or the theories of different data structures like lists, arrays or bit-
vectors.

Solving SMT problems draws on symbolic logic’s biggest problems of the
past century, namely the decision problem, complexity theory and complete-
ness and incompleteness of logical theories. As already mentioned, SMT
solvers rely on SAT solvers and SAT is Nondeterministic Polynomial (NP)
complete. Furthermore, FOL is undecidable and the computational com-
plexity of most SMT problems is very high. That is why most solvers focus
on efficiently solving practical problems, like formulas produced by verifi-
cation and analysis tools, since most of these formulas can be efficiently
solved. SMT additionally struggles with finding algorithms that efficiently
handle different theories and also work well when combined with one an-
other. However, even with all these problems and limitations there has
been a vast progress in the field of SMT in recent years. Many problems
can be solved, not only thanks to modern SAT solvers, but also because of
constantly improved algorithms and efficient implementations [29].

2.3 Theories

One core part of SMT is made up of the theories, or more specifically, the the-
ory solvers. Most modern SMT solvers follow the Davis-Putnam-Logemann-
Loveland modulo Theories (DPLL(T)) paradigm, which suggests a separate
implementation for each theory. This leads to the conclusion that not all

5

Chapter 2 Satisfiability Modulo Theories Solver

Figure 2.1: Overview of the SMT-LIB logics [4]. A link from a logic L1 to a
logic L2 means that every formula of L1 is also a formula of L2. The logic
shaded in gray is the one relevant for spreadsheet debugging.

SMT solvers implement the same theories, just those needed for their field of
application. Some theories became very popular because of their wide range
of application, like the theory of uninterpreted functions with equality, lin-
ear arithmetic over integers and reals or the theories of arrays or bit-vectors.
Due to their popularity, the website Satisfiability Modulo Theories Library
(SMT-LIB) [4] started to provide standard rigorous descriptions of these
most commonly used theories. On the website these descriptions of theories
are named SMT-LIB logics. There is also a yearly competition called Satis-
fiability Modulo Theories Competition (SMT-COMP), where different SMT
solvers compete against each other. Participants of this competition can en-
roll their SMT solvers in the divisions of their choice, since not every solver
supports each background theory. All these different divisions correlate to
a specific SMT-LIB logic. Figure 2.1 shows an overview of the SMT-LIB
logics. The abbreviations’ meanings of these logics are explained in Table
2.1.

6

Chapter 2 Satisfiability Modulo Theories Solver

Abbreviation Meaning
QF quantifier-free
A or AX theory of arrays
BV theory of fixed size bit-vectors
IA theory of integer arithmetic
RA theory of real arithmetic
IRA theory of mixed integer real arithmetic
IDL theory of integer difference logic
RDL theory of real difference logic
L before IA, RA, IRA linear
N before IA, RA, IRA non-linear
UF uninterpreted functions with equality

Table 2.1: Short explanation of SMT-LIB logics’ abbreviations [4].

2.3.1 Basic Theory Definitions

Basically, a theory is a set of sentences and we say, a formula ϕ is satisfiable
modulo a theory T if T ∪ {ϕ} is satisfiable. Meaning, there exists a model
M that satisfies ϕ under the theory T , denoted as M |=T ϕ. Furthermore,
if there is a procedure δ that checks whether any quantifier-free formula is
satisfiable or not, then the satisfiability problem for a theory T is decidable.
Meaning, δ is a decision procedure for T [29].

2.3.2 Uninterpreted functions with equality

The theory of uninterpreted functions with equality is denoted by the SMT-
LIB as QF_UF: quantifier-free uninterpreted functions with equality. An
uninterpreted function is a function with a name and arity but, as the name
suggests, no interpretation, like for example:

f(x), g(x, y), f(f(x)), or f(g(f(y), x))

Furthermore, as Condit and Harren stated in their lecture notes [15], the
theory allows boolean connectives (∧, ∨, . . .), equalities (=) and unequalities
(6=). Following axiom definitions are valid for =, as well as 6= and were
defined in [15]:

Definition 2.10. Reflexivity: E=E

Definition 2.11. Transitivity: E1=E2 E2=E3
E1=E3

7

Chapter 2 Satisfiability Modulo Theories Solver

Definition 2.12. Symmetry: E2=E1
E1=E2

Definition 2.13. Congruence: E1=E2
f(E1)=f(E2)

Decision procedures for this theory have great significance, since the de-
cision problem for other theories can be reduced to it. Many theory solvers
for uninterpreted functions are based on the congruence closure method.
If we consider a formula, which consists of conjunctions of equalities be-
tween terms using free functions, congruence closure can be applied to find
a representation of the smallest set of implied equalities. This is done by
converting each term of the formula into a Directed Acyclic Graph (DAG).
These DAGs can be used to check if the formula, consisting of a mix of
equalities and disequalities, is satisfiable by applying above axioms. Finally,
a last check needs to be performed that checks whether terms on both sides
of each disequality are in different equivalence classes [29]. Figure 2.2 shows
a step-by-step example of the congruence closure algorithm.

2.3.3 Linear arithmetic

The theory of linear arithmetic is denoted by the SMT-LIB as LIA, LRA,
QF_LIA and QF_LRA, which stands for quantified or quantifier-free linear
integer arithmetic or linear real arithmetic. Their definitions state that
arithmetical functions +, - and · are supported. However, · is restricted to
be of form c ·x, where c is a constant and x a variable. For linear arithmetic
over reals the following form of : is also allowed: c : x, where c is a rational
coefficient and x a variable. Furthermore, relational symbols for equality
and inequalities (=,≤, <, . . .) are used to form atomic predicates. A popular
procedure for deciding linear arithmetic, which many SMT solvers use in its
linear arithmetic solver, is called the simplex algorithm [29]. Dutertre and
de Moura explained in detail how this algorithm works and presented a more
efficient version for linear arithmetic solvers for DPLL(T) in [23].

2.3.4 Difference arithmetic

The theory of difference arithmetic is denoted by the SMT-LIB as QF_IDL
and QF_RDL, which stands for quantifier-free integer difference logic and
quantifier-free real difference logic. It is a part of linear arithmetic, where
inequalities are restricted to have the form x− y ≤ c, for variables x, y and

8

Chapter 2 Satisfiability Modulo Theories Solver

(a) DAGs, each representing a term of the
example;

(b) Equivalences a = b and b = c added as
dashed lines;

(c) Nodes g(a) and g(c) are congruent be-
cause a = c, which is implied by the first
two equalities (transitivity rule);

(d) Nodes f(a, g(a)) and f(b, g(c)) are also
congruent, since a = c and g(a) = g(c).
Therefore, the example is unsatisfiable be-
cause the term f(a, g(a)) 6= f(b, g(c)) is
not true;

Figure 2.2: Congruence closure example: a = b ∧ b = c ∧ f(a, g(a)) 6=
f(b, g(c)) [29].

9

Chapter 2 Satisfiability Modulo Theories Solver

(a) An example of conjunc-
tions of difference inequalities;

(b) The example’s representation as a graph; the neg-
ative cycle is depicted by the dashed lines, making the
problem unsatisfiable;

Figure 2.3: Difference inequalities example [29].

constant c. Conjunctions of such inequalities can be solved very efficiently
by searching for negative cycles in weighted directed graphs. Whereas, each
variable represents a node of the graph and an inequality x − y ≤ c cor-
responds to an edge from y to x with weight c [29]. Figure 2.3 shows an
example of a conjunction of difference inequalities, as well as its representa-
tion as a graph.

2.3.5 Non-linear arithmetic

Non-linear arithmetic is a super-set of linear arithmetic. It is denoted by
the SMT-LIB as NIA, NRA, QF_NIA and QF_NRA, which stands for
quantified or quantifier-free non-linear integer arithmetic and non-linear real
arithmetic. Decision procedures for non-linear arithmetic over reals use al-
gorithms from computer algebra, like computing a Gröbner basis from equal-
ities. The problem of deciding satisfiability for non-linear integer arithmetic
however, is undecidable. Meaning, there exists no algorithm, which can
solve each instance of this problem [29]. Adding quantifiers to the theory
makes it even worse. According to [29], there is not even a computable set
of axioms for characterizing quantified non-linear integer arithmetic. There
are not many SMT solvers that support non-linear arithmetic, which is
unfortunate, since we need non-linear real arithmetic to be able to debug
spreadsheets.

10

Chapter 2 Satisfiability Modulo Theories Solver

2.3.6 Bit-vectors

The theory of bit-vectors is denoted by the SMT-LIB as QF_BV: quantifier-
free bit-vectors. It represents every number as a fixed-size sequence of bits.
In addition to standard arithmetic operations, the theory of bit-vectors also
allows mixing bit-wise operations, like NOT, AND, OR, XOR, as well as bit
shifts. Efficient decision procedures for bit-vectors use methods, like lazy
bit-blasting and approximating long bit-vectors by short bit-vectors [29].

2.3.7 Arrays

The theory of arrays is denoted by the SMT-LIB as QF_AX: quantifier-free
arrays with extensions. As the name suggests, it defines the usage of arrays,
which have two special functions:

Definition 2.14. write(a,i,v): writes value v at index i of array a.

Definition 2.15. read(a,i): denotes the value stored in array a at index i.

The definition of the theory of arrays is very vague, to allow for different
extensions or restrictions. For instance, some theories restrict, which array
sorts are allowed, by restricting its maximal dimension. The most common
approach to deal with the theory of arrays is to use a reduction to the
theory of uninterpreted functions with equality through lazy array axiom
instantiation [29].

2.3.8 Quantified Theories

If we consider quantifiers part of the language of FOL the problem of de-
ciding satisfiability becomes significantly more difficult. In fact not many
SMT solvers support theories that allow quantifiers. However, if quanti-
fiers are supported, usually some form of E-matching is performed to decide
satisfiability.

2.3.9 Theory Combination

As already mentioned above, one major difficulty in SMT solver develop-
ment lies within finding algorithms that not only are able to efficiently han-
dle special theories, but can also be modularly combined with one another.
There are several different methods to combine theories for SMT solving

11

Chapter 2 Satisfiability Modulo Theories Solver

Uninterpreted Functions Linear Arithmetic
f(e1) = a e2 − e3 = e1
f(x) = e2 e4 = 0
f(y) = e3 e5 = a+ 2
f(e4) = e5
x = y

shared variables: e1, e2, e3, e4, e5, a

Table 2.2: Purification example of the Nelson-Oppen combination method.

that proved themselves in practice, the Nelson-Oppen combination method,
the delayed theory combination method and the Model-based theory com-
bination method.

• Nelson-Oppen Combination [29], [8]: Assume, we have an SMT
input formula ϕ, of the form:

f(f(x)− f(y)) = a ∧ f(0) = a+ 2 ∧ x = y,

as provided by Oliveras and Rodriguez-Carbonell in [32]. To check
satisfiability for this formula, we have to combine the theories of unin-
terpreted functions and linear arithmetic. That is where the Nelson-
Oppen combination method comes into play: it purifies the formula ϕ
into ϕ1 ∧ . . . ∧ ϕn by splitting alphabet Σ, such that, ϕi ∈ Σi. These
Σi’s do not have any common function or predicate symbols, however,
they may have shared variables. The purification is done according to
the following satisfiability preserving transformation rule:

f(x)→ f(e) ∧ e = x,where e is a fresh variable.

For our above example, this would split our formula into one part
solvable by the theory solver for uninterpreted functions with equality
and one part solvable by the linear arithmetic theory solver, as can be
seen in Table 2.2.

With that the two theory solvers can check satisfiability for their part
of the formula, while propagating entailed equalities of their shared
variables between them. This is done until a convergence is reached,

12

Chapter 2 Satisfiability Modulo Theories Solver

meaning, the formula is satisfiable, or until one solver returns unsat-
isfiable.

• Delayed Theory Combination: The delayed theory combination
method is a refinement for the Nelson-Oppen method. Instead of di-
rectly exchanging equalities between the two theory solvers, the de-
layed theory combination method takes a different approach. The
theory solvers work isolated from each other. All entailed equalities
between shared variables are added to both parts of the formula be-
fore given to the SAT solver to find a satisfying truth assignment.
This assignment is then splitted into different sub-assignments. One
assignment for each theory, containing theory pure literals, and one as-
signment for shared equalities. The later and the corresponding theory
assignment is then checked for consistency by each theory solver. If
both theory solvers return satisfiable, the formula is satisfiable. Oth-
erwise, the conflict set is added to the formula, to prevent the same
truth assignments from occurring. If no T -consistent model can be
found, the formula is unsatisfiable [8].

• Model-based Theory Combination: The model-based theory com-
bination method also builds upon the Nelson-Oppen combination. For
this approach each theory Ti needs to maintain its own model Mi.
When an equality is found, the theory creates a new equality decision
literal (u ' v)d and propagates it to all theories sharing u and v. Each
of these models Mi need to get changed to satisfy the new literal. In
case the equality does not hold within one of the models, satisfiability
needs to be checked for the negated literal. If this again leads to an
inconsistency, the formula is unsatisfiable. Otherwise, the process is
continued until models are found that satisfy the whole formula [18].

2.4 Famous Problems expressed as SMT

Many logic puzzles can be expressed as an SMT instance, like Sudoku, Num-
brix, the N-queens puzzle and the map coloring problem. As a short demon-
stration we will describe the later two problems and have a look at how they
can be expressed as SMT problems.

13

Chapter 2 Satisfiability Modulo Theories Solver

(a) A wrong solution for the 4-queens puz-
zle;

(b) A valid solution for the 4-queens puz-
zle;

Figure 2.4: Example of a 4-queens puzzle.

N-queens puzzle

The n-queens puzzle is based on the rules of chess. Given an n · n chess
board, n chess queens have to be placed on that board in such a way, that
no queen can attack another. (Queens can attack other pieces if they are in
the same row, column, or diagonal from the queen.)
A 4-queens puzzle represented as an SMT problem can look as follows:

• Variables: p1,1, p1,2, p1,3, p1,4, p2,1, . . . , p4,3, p4,4 (one variable for each
field of the board)

• Domains: Di = {0, 1} (for the options: one queen or no queen on a
field)

• Constraints: no queen can attack another queen

(p1,1 + p1,2 + p1,3 + p1,4 = 1) ∧ . . . (for each row and column) ∧
(p1,1 + p2,2 + p3,3 + p4,4 ≤ 1) ∧ . . . (for each diagonal)

Figure 2.4 shows an example for a wrong solution and a possible valid
solution of the 4-queens puzzle.

Map coloring problem

Given a map of a country with different territories and n different colors,
color the map in a way that no neighboring territories have the same color.

14

Chapter 2 Satisfiability Modulo Theories Solver

Figure 2.5: A possible solution of the map coloring problem for the map of
Austria.

Expressed as an SMT problem the map coloring problem for the map of
Austria with three different colors might look like the following:

• Variables: W, N, O, ST, B, S, K, T, V (one variable for each territory)

• Domains: Di = {1, 2, 3} (each value represents a color)

• Constraints: neighboring territories must have different colors

(V 6= T) ∧ (T 6= S) ∧ (T 6= K) ∧ (S 6= O) ∧ (S 6= ST) ∧ (S 6=
K)∧ (K 6= ST)∧ (ST 6= O)∧ (ST 6= N)∧ (ST 6= B)∧ (O 6= N)∧ (N 6=
W) ∧ (N 6= B)

Figure 2.5 shows a possible solution of the map coloring problem for a
map of Austria.

2.5 Resolution of SMT

As already mentioned before, state-of-the-art SMT solvers use efficient SAT
solvers for deciding satisfiability of a formula. However, SAT solvers work
on PL and therefore, a conversion from FOL to PL is necessary. Further-
more, PL has a lower expressiveness than FOL and that is why several steps
are needed for a successful translation. Once the formula was successfully
translated, it can be passed to the SAT solver to decide satisfiability. In
modern SMT solvers, there are two common approaches on how the SMT
solvers interact with the SAT solver.

15

Chapter 2 Satisfiability Modulo Theories Solver

Eager approach

SMT solvers that implement the eager approach translate the FOL formula
into a PL Conjunctive Normal Form (CNF) formula using an algorithm,
which preserves satisifability. This is done by considering each atom as a
Boolean variable and by adding inconsistencies to the formula. The eager
approach derives all the inconsistencies before calling the SAT solver. This
will lead to an easy set-up, since the SAT solver functions as a kind of black-
box. However, there might arise the problem that too many inconsistencies
get produced, which could turn an easy problem into an impossible one.
Most SMT solvers for bit-vectors are based on the eager approach, since
there exists eager encoding, which prevents the generation of too many in-
consistencies [7]. Furthermore, for a correct translation of FOL formulas
into PL formulas efficient procedures for every theory are needed. Even
though a lot of effort was put into creating algorithms like that, the lazy
approach is in many cases tremendously faster [31].

Following solving methodology gives a general idea on how an SMT solver,
that interacts with its SAT solver according to the eager approach, decides
satisfiability for a FOL formula [7]:

• assume each atom is a Boolean variable;

• search for all inconsistencies between atoms;

• translate the formula into a Boolean formula;

• pass the resulting SAT formula to a SAT solver and return the same
result.

Example 2.4. x = y ∧ (x < y ∨ x > y)
According to above methodology we first need to consider each atom as
a Boolean variable. Therefore, we say (x = y) 7→ a, (x < y) 7→ b and
(x > y) 7→ c. The next step requires us to look for inconsistencies. If x = y,
neither x < y and x > y can be true. Therefore, our inconsistencies are
¬(a ∧ b) and ¬(a ∧ c). We now translate the FOL formula into a PL one
by converting every atom into a Boolean variable and by adding all found
inconsistencies. This will lead to the result a ∧ (b ∨ c) ∧ ¬(a ∧ b) ∧ ¬(a ∧ c).
If this formula is passed to the SAT solver to decide its satisfiability, it

16

Chapter 2 Satisfiability Modulo Theories Solver

would return unsatisfiable. Therefore, the SMT solver’s result would also
be unsatisfiable, since it returns the same value.

Lazy approach

The lazy approach derives inconsistencies during SAT solving. Meaning, it
adds inconsistencies on demand and therefore, usually requires less incon-
sistencies to find a solution. Yet, for the lazy approach to work properly,
it needs to interface with the SAT solver to decide the T -consistency of the
found models. This leads to a more difficult set-up than as with the eager
approach. Nonetheless, the lazy approach is, due to its flexibility, the more
commonly used procedure in existing SMT solvers [7].

Following solving methodology gives a general idea on how an SMT solver,
that interacts with its SAT solver according to the lazy approach, decides
satisfiability for a FOL formula [7]:

• assume each atom is a Boolean variable;

• pass the resulting SAT formula to a SAT solver;

• if the SAT solver returns unsatisfiable return the same result;

• if the SAT solver finds a model, check the model for T -consistency;

• if the model is T -consistent return satisfiable;

• if the model is T -inconsistent add theory lemmas to the formula, pass
it to SAT solver and begin anew with deciding its satisfiability;

Example 2.5. x = y ∧ (x < y ∨ x > y)
Again we have to consider each atom as a Boolean variable: (x = y) 7→ a,
(x < y) 7→ b and (x > y) 7→ c. In the next step we pass the translated
formula (a∧ (b∨ c)) to the SAT solver and let it decide satisfiability. In our
case the SAT solver would return satisfiable and pass a model to the theory
solver. This model could look like a = 1, b = 1, c = 0. Meaning, a and b

have to be true to make the formula satisfiable. The theory solver checks this
model for T -consistency by verifying, if the corresponding FOL atoms can
be true as well. In our case a is true and a correlates to x = y. Furthermore,
b is true, which correlates to x < y. For the FOL formula to be satisfiable as

17

Chapter 2 Satisfiability Modulo Theories Solver

(a) Eager approach: The encoder adds
inconsistencies to the SMT formula and
translates it into a propositional formula.
The translated formula is then passed to
the SAT solver to decide satisfiability.

(b) Lazy approach: The formula is
translated into a propositional formula
and passed to the SAT solver to decide
satisfiability. The SAT solver and theory
solver interact with each other to decide
the T -consistency of the candidate mod-
els.

Figure 2.6: Illustration of the eager and lazy approach [7].

well, x and y need to be equal and unequal at the same time, which is not
possible. Therefore, the model is T -inconsistent. The theory solver will add
this inconsistency, ¬(a∧b), to the formula and pass it back to the SAT solver
to check for satisfiability. Again the formula would be satisfiable, however,
the theory solver would prove the model to be T -inconsistent and add the
theory lemma ¬(a ∧ c), leading to the formula being unsatisfiable.

Figure 2.6 shows a high-level view of both the eager and lazy approach.

2.6 DPLL and DPLL(T)

Most modern SAT solver are based on the Davis-Putnam-Logemann-Loveland
(DPLL) paradigm, which describes different procedures to efficiently solve
SAT problems. SMT solvers make use of this paradigm as well, since they
depend on a SAT solver to decide satisfiability. However, as already men-
tioned, most SMT solvers interact with the SAT solver according to the lazy
approach. Therefore, it is necessary to slightly adapt the DPLL paradigm
for it to be able to interact with the theory solver and work modulo a theory.
Following sections introduce an abstract DPLL model, as well as an abstract
DPLL(T) model.

18

Chapter 2 Satisfiability Modulo Theories Solver

2.6.1 DPLL paradigm

The DPLL procedure was introduced in 1962 by Martin Davis, Hilary Put-
nam, George Logemann and Donald Loveland to decide satisfiability of PL
formulas in CNF, later known as SAT. Nowadays, over 50 years later, dif-
ferent variations of the DPLL procedure build the basis for most state-of-
the-art SAT solvers [17], [16]. It consists of the following seven transition
rules, which describe in a general way how modern DPLL based SAT solvers
work.

UnitPropagate

M ‖ F, C ∨ l =⇒ M l ‖ F, C ∨ l if
{
M |= ¬C
l is undefined in M

For a CNF formula to be satisfiable, all its clauses have to be true. There-
fore, UnitPropagate looks for clauses whose literals have all been assigned
the value false, with exception of one literal, whose value was not yet defined
by M . The only way for the clause to be true in M is to extend M with the
remaining literal equal to true [31].

Decide

M ‖ F =⇒ M ld ‖ F if
{
l or ¬l occurs in a clause of F
l is undefined in M

Decide conducts a case split. It chooses an undefined literal l and as-
signs a truth value to it and adds it to M . Additionally, l gets denoted as a
decision literal ld. In case that l ∈M cannot be extended to a model of F ,
¬l ∈M must still be considered [31].

Fail

M ‖ F, C =⇒ FailState if
{
M |= ¬C
M contains no decision literals

If a conflicting clause gets detected and M contains no decision literals,
meaning, all literals in M have a fixed value, DPLL produces a FailState,
returning the result that F is unsatisfiable [31].

19

Chapter 2 Satisfiability Modulo Theories Solver

Backjump

M ld N ‖ F, C =⇒ M l’ ‖ F, C if

M ld N |= ¬C, and there is
some clause C ′ ∨ l′ such that:
F, C |= C ′ ∨ l′ and M |= ¬C ′,

l′ is undefined in M, and
l′ or ¬l′ occurs in F or in M ld N

Chronological backtracking always goes back to the last decision literal ld

and changes it to ¬l. Conflict-driven Backjumping, evaluates why the
conflicting clause was produced and then, if necessary, goes back several de-
cision levels at once, where it adds some new literals to that lower level [31].

Learn

M ‖ F =⇒ M ‖ F, C if
{

each atom of C occurs in F or in M
F |= C

Learn basically uses backjump clauses (C ′∨ l′) and adds them to the clause
set as learned clauses. Theoretically, Learn allows to add any clause C to
F , as long as all atoms of C are included in either F or M . Meaning, not
only lemmas can be added, but any produced consequence of F [31].

Forget

M ‖ F, C =⇒ M ‖ F if
{
F |= C

Forget, on the contrary to Learn, removes lemmas with relevance or activ-
ity levels below a certain threshold. An activity could be, f.i., the number
of times it becomes a unit or a conflicting clause. Similar to Learn, Forget
theoretically can remove not just those clauses added by Learn, but any
clause, if it is entailed by the rest of F [31].

Since producing consequences and determining entailments are very costly,
their usage is very limited in practice.

Restart

M ‖ F =⇒ ∅ ‖ F

20

Chapter 2 Satisfiability Modulo Theories Solver

The idea behind Restart is that the additional knowledge of the learned
lemmas will lead to theDecide rule to behave differently and find a solution
faster than by backtracking [31].

2.6.2 DPLL(T) paradigm

The DPLL(T) paradigm builds upon DPLL. However, before we can adapt
our abstract DPLL model from above to work modulo theories, we need to
consider that instead of dealing with propositional literals, DPLL(T) deals
with quantifier-free first-order ones. Concerning the rules Decide, Fail,
UnitPropagate and Restart this is the only change necessary. As for the
rules Learn, Forget and Backjump, they need to be slightly adapted to
work modulo theories. These adaptations are described below.

T-Learn

M ‖ F =⇒ M ‖ F, C if
{

each atom of C occurs in F or in M
F |=T C

Entailment between formulas becomes entailment in T . Also T -learned
clauses can belong to M and F , instead of only to F . Otherwise, the rule
behaves the same as Learn [31].

T-Forget

M ‖ F, C =⇒ M ‖ F if
{
F |=T C

The only change in the T-Forget rule is that entailment between formulas
becomes entailment in T [31].

T-Backjump

M ld N ‖ F, C =⇒ M l’ ‖ F, C if

M ld N |= ¬C, and there is
some clause C ′ ∨ l′ such that:
F, C |=T C ′ ∨ l′ and M |= ¬C ′,

l′ is undefined in M, and
l′ or ¬l′ occurs in F or in M ld N

T-Backjump makes use of both, the propositional notion of entailment
(|=) and the first-order notion of entailment modulo a theory (|=T) [31].

21

Chapter 2 Satisfiability Modulo Theories Solver

The theory solver waits for the SAT solver to find a model M for the for-
mula. If such a model is found and neither of the rules Decide, Fail,
UnitPropagate and T-Backjump can be applied, the T-solver checks the
models consistency. If it is T -consistent, the formula is satisfiable with re-
spect to the theory. Otherwise, if M is T -inconsistent, then there exists a
set of literals {l1, . . . , ln} in M , which is inconsistent with the theory. T-
Learn will learn the theory lemma ¬l1 ∨ . . . ∨ ¬ln and Restart is applied.
This process is repeated until a T -consistent model is found or a FailState is
reached [31]. Theoretically, that is how SMT solvers operate to solve SMT
problems. However, most modern SMT solvers implement different methods
to enhance performance. The most commonly used methods are described
below.

Incremental T-solver

Most state-of-the-art SMT solvers implement the concept of incremental
T-solvers. This means, instead of waiting for the SAT solver to find a
model, the T -consistency of the assignment is checked incrementally while
it is being built by the DPLL procedure. This can be done eagerly, that
is, detecting T -inconsistencies as soon as they are produced, or in certain
intervals, e.g., once every k literals are added to the assignment. For this to
work efficiently, the theory solver has to be faster in processing one additional
literal, than in reprocessing the whole set of literals from the beginning. This
is, in fact, practicable for many theories but not all [31].

On-line SAT solvers

After a T -inconsistency is detected and learned as a theory lemma, instead
of beginning the search anew, the procedure will either apply T-Backjump,
to go back to a point where the assignment was still T -consistent, or produce
a FailState through the Fail rule [31].

Theory propagation

The techniques described up to now allowed the theory solver to only provide
information after a T -inconsistent state was reached. Theory propagation
describes the technique to detect literals l of a formula that are currently

22

Chapter 2 Satisfiability Modulo Theories Solver

true in the partial assignment M (denoted as M |=T l), and adds these
literals to M [31]. Theory propagation is a kind of forward checking and
plays an important role in DPLL(T). That is why, we add another rule to
our abstract model from above.

TheoryPropagate

M ‖ F =⇒ M l ‖ F if

M |=T l

l or ¬l occurs in F
l is undefined in M

TheoryPropagate prunes the search tree by assigning a truth value to
T -entailed literals, instead of guessing a value in the Decide step.

Exhaustive theory propagation

Exhaustive theory propagation means, to apply theory propagation
with a higher priority than the Decide rule. Techniques that do not use
theory propagation, but instead learn theory lemmas, have to add many
consequences of the theory into the clause set and therefore, duplicate the
theory information. With Exhaustive theory propagation the process
of duplicating theory information becomes unnecessary, and non-exhaustive
theory propagation reduces it greatly [31].

23

Chapter 3

SMT Solver Comparison

This chapter gives a brief overview of some state-of-the-art SMT solvers
concerning their functionality. Only SMT solvers that can handle real num-
bers are considered, since they should be able to debug spreadsheets, and
usually spreadsheets contain real numbers. Furthermore, the framework de-
veloped at the Graz University of Technology, which compares performance
and execution time of different SMT- and constraint solvers when debug-
ging spreadsheets, makes use of the MCSes-U algorithm that depends on
the solvers’ functionality to extract unsatisfiable cores. Therefore, it is im-
portant that the solvers support the extraction of unsatisfiable cores.

Table 3.1 lists all SMT solvers that support real numbers and participated
in at least one of the SMT-COMPs from 2005 to 2014.

A summarized overview of the SMT solvers supporting real numbers can
be found in Table 3.2 and Table 3.3, whereas, a more detailed description
follows below.

3.1 Z3

Z3 is a high-performance theorem prover implemented in C++ and de-
veloped at Microsoft Research. It is published under the Microsoft Re-
search License Agreement (MSR-LA) license. Application Programming
Interfaces(APIs) are available in C, C++, .NET, Python, Java and OCaml.
As input language, Z3 supports an extended version of the SMT-LIB v2.0
script language, the Simplify format and the DIMACS format. Further-

Chapter 3 SMT Solver Comparison

Name SMT-COMP
Barcelogic 2006-2009
CVC/CVCLite/CVC3 2005-2012
CVC4 2010-2014
MathSAT 2005-2014
SMTInterpol 2011-2014
test_pmathsat 2010
veriT 2009-2011, 2013, 2014
Yices 2 2005-2009, 2014
Z3 2007, 2008, 2011, 2013, 2014

Table 3.1: SMT solvers that support real numbers and participated in the
SMT-COMP at least once [35], [3], [14]. Solvers shaded in gray are outdated.
Either they are no longer in development or a newer version is available.

more, it is one of the few solvers able to handle every SMT-LIB logic [33].
Z3 participated in many SMT-COMPs over the years and always did very
well. In 2011’s competition Z3 won QF_BV, QF_UF, QF_LIA, QF_LRA,
QF_UFLIA, QF_UFLRA, QF_AUFLIA, QF_IDL, AUFLIA, AUFNIRA
among others. Furthermore, 15 benchmarks could only be solved by Z3 and
no other solver. A year later Z3 did not participate in the SMT-COMP,
yet, the winning solvers could not improve over Z3’s 2011 submission in
any division, with exception to the division QF_BV [14]. The number of
benchmarks that could only be solved by Z3 increased to 21 benchmarks
in 2013 [35]. In 2014’s SMT-COMP Z3 participated non-competitive, as a
reference for the other competitors. However, it still won in 15 divisions out
of 32 [13].

Technical characteristics

A more detailed description of Z3’s characteristic features follows below [20],
[19].

• User Interaction: Z3 supports many different input formats. Next
to its own native input language, Z3 accepts the SMT-LIB v2.0 script
language, the Simplify format and the DIMACS format as input. Fur-
thermore, it is also accessible via an API, which is available in C, C++,
.NET, Python, Java and OCaml.

• Simplifier: Z3 implements a module called simplifier. The simplifier

25

Chapter 3 SMT Solver Comparison
N
am

e
A
ffi
lia

ti
on

C
od

in
g

La
n-

gu
ag
e

Li
ce
ns
e

A
P
I

In
pu

t
La

ng
ua

ge
M
od

el
s

P
ro
of
s

U
ns
at
-

C
or
es

C
V
C
4
[2
6]

N
Y
U
,

U
.

Io
w
a

C
+
+

B
SD

C
+
+

SM
T
-L
IB

v1
.0
/v

2.
0,

na
tiv

e
la
ng

ua
ge

ye
s

ye
s

no

M
at
hS

AT
5
[1
0]

U
.

Tr
en
to
,

FB
K
-ir

st
C
+
+

Pr
op

rie
ta
ry

C

SM
T
-L
IB

v1
.2
/v

2.
0,

C
en

-
te
r

fo
r

D
isc

re
te

M
at
he

m
at
ic
s

an
d

T
he

or
et
ic
al

C
om

-
pu

te
r

Sc
ie
nc

e
(D

IM
A
C
S)

fo
rm

at
,

na
tiv

e
la
ng

ua
ge

ye
s

ye
s

ye
s

SM
T
In
te
rp
ol

[9
]

U
.F

re
ib
ur
g

Ja
va

LG
PL

v3
Ja
va

SM
T
-L
IB

v1
.2
/v

2.
0,

D
I-

M
A
C
S
fo
rm

at
ye
s

ye
s

ye
s

ve
riT

[2
1]

U
.

N
an

cy
,

IN
R
IA

,
U
FR

N
C

B
SD

C
SM

T
-L
IB

v2
.0
,
D
I-

M
A
C
S
fo
rm

at
ye
s

ye
s

no

Y
ic
es

2
[2
2]

SR
I

C
Pr

op
rie

ta
ry

C
SM

T
-L
IB

v1
.2
/v

2.
0,

na
tiv

e
la
ng

ua
ge

ye
s

no
no

Z3
[2
0]

M
ic
ro
so
ft

R
es
ea
rc
h

C
+
+

M
SR

-L
A

C
,

C
+
+
,

.N
ET

,
Py

th
on

,
Ja
va
,

O
C
am

l

SM
T
-L
IB

v2
.0
,

Si
m
pl
ify

fo
rm

at
,

D
IM

A
C
S
fo
rm

at
ye
s

ye
s

ye
s

Ta
bl
e
3.
2:

O
ve
rv
ie
w

of
SM

T
so
lv
er
s
su
pp

or
tin

g
re
al

nu
m
be

rs
,r

eg
ar
di
ng

th
ei
r
affi

lia
tio

n,
co
de

ba
sis

,p
ro
vi
de

d
in
te
rf
ac
es

an
d

su
pp

or
te
d
fu
nc

tio
na

lit
y.

C
ol
um

ns
sh
ad

ed
in

lig
ht

gr
ay

de
no

te
th
e
ne

ce
ss
ar
y
fu
nc

tio
na

lit
y
fo
rs

pr
ea
ds
he

et
de

bu
gg

in
g.

C
ol
um

ns
de

no
tin

g
th
e
fu
nc

tio
na

lit
y
re
qu

ire
d
to

w
or
k
in

co
m
bi
na

tio
n
w
ith

th
e
M
C
Se

s-
U

al
go

rit
hm

[2
8]

ar
e
sh
ad

ed
in

da
rk

gr
ay
.

26

Chapter 3 SMT Solver Comparison

N
am

e
Q
F
_
U
F

Q
F
_
A
X

Q
F
_
B
V

Q
F
_
D
L

Q
F
_
LA

Q
F
_
N
A

Q
ua

nt
ifi
er
s

C
V
C
4

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

M
at
hS

AT
5

ye
s

ye
s

ye
s

no
ye
s

no
no

SM
T
In
te
rp
ol

ye
s

no
no

no
ye
s

no
no

ve
riT

ye
s

no
no

ye
s

ye
s

no
ye
s

Y
ic
es

2
ye
s

ye
s

ye
s

ye
s

ye
s

no
no

Z3
ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

Ta
bl
e
3.
3:

O
ve
rv
ie
w

of
su
pp

or
te
d
th
eo
rie

s.
C
ol
um

ns
fo
r
ar
ith

m
et
ic

th
eo
rie

s
al
w
ay
s
ap

pl
y
fo
r
in
te
ge
r
an

d
re
al

ar
ith

m
et
ic
.
N
ot

lis
te
d
in

th
is

ta
bl
e
ar
e
th
e
su
pp

or
te
d
co
m
bi
na

tio
ns

of
th
e
th
eo
rie

s.
T
he

y
ca
n
be

fo
un

d
in

th
e
in
di
vi
du

al
so
lv
er
’s

de
sc
rip

tio
n.

T
he

co
lu
m
ns

sh
ad

ed
in

gr
ay

de
no

te
th
e
th
eo
rie

s
re
le
va
nt

fo
r
sp
re
ad

sh
ee
t
de

bu
gg

in
g.

27

Chapter 3 SMT Solver Comparison

simplifies the input formulas by applying standard algebraic reduction
rules and contextual simplifications.

• Core technology: Like most modern SMT solvers, Z3 is based on the
lazy/DPLL(T) paradigm. Furthermore, it integrates a custom DPLL-
based SAT solver with functionalities like standard search pruning
methods, two-watch literals for constraint propagation, lemma learn-
ing using conflict clauses, and non-chronological backtracking.

• Theory solver: Z3 integrates a core theory solver that handles equali-
ties and uninterpreted functions and different satellite solvers for linear
arithmetic, bit-vectors, arrays and others. Additionally, Z3 makes use
of an E-matching machine to handle quantifiers. The theory solver
for uninterpreted functions with equalities is based on the congruence
closure algorithm. A basis for the linear arithmetic theory solver pro-
vides the simplex algorithm. The theory solver for arrays uses lazy
instantiation of array axioms. Whereas, the bit-vector theory solver
applies bit-blasting to all bit-vector operations except equality. To
combine theories, Z3 makes use of the model-based theory combina-
tion method [5].

• Models and Proofs: Microsoft’s SMT solver is able to return models
for satisfiable formulas. Furthermore, it can generate proofs for unsat-
isfiable formulas, and extract unsatisfiable cores. An unsatisfiable core
is a subset of clauses of the input formula, which are T -unsatisfiable.
Considering the SMT solvers supporting real numbers, Z3, SMTInter-
pol and MathSAT 5 currently are the only three solvers that support
the functionality to extract unsatisfiable cores.

3.2 CVC4

CVC4 stands for Cooperating Validity Checker and is a joint project of New
York University and University of Iowa. It is an open-source software written
in C++ and published under the terms of the modified Berkeley Software
Distribution (BSD) license. Although, some builds link against libraries
published under the GNU General Public License (GPL) and therefore, the
use of these builds is allowed for open-source projects only. CVC4 accepts
three different input languages, namely SMT-LIB v1.0, SMT-LIB v2.0 and

28

Chapter 3 SMT Solver Comparison

CVC4’s own native language. Furthermore, CVC4, like Z3, is able to handle
every SMT-LIB logic [26]. Like MathSAT 5, CVC4 and its predecessors
participated in every SMT-COMP from 2005 to 2014. CVC4 is one of the
few SMT solvers that support quantifiers. In 2012, CVC4 and its predecessor
CVC3 were the only submissions for the divisions including quantifiers. That
is why they were only run as a demonstration. The result showed though
that neither of the two did improve over Z3, the winner of the year before.
For the theory of QF_UFLRA CVC4 won against four other participants,
and managed to improve over one but not all of the winners in 2011 [14]. In
2014’s SMT-COMP CVC4 won in the divisions AUFLIA, AUFNIRA, LRA,
QF_AUFBV, QF_LIA, QF_LRA, QF_UFNIA, UF and UFLIA [13].

Technical characteristics

CVC4 has four predecessors to learn from in terms of implementation archi-
tecture, and efficiency. Therefore, it offers many different features [26], [2].

• User Interaction: As already mentioned, CVC4 supports SMT-LIB
language v1.0 and v2.0, as well as its own native language. It reads
input from an external file and recognizes the input language by the
file’s extension (.cvc for CVC4’s native language, .smt2 for SMT-LIB
v2.0 and .smt for SMT-LIB v1.0). Additionally, the user can specify
the type of the input language by a command line flag. CVC4 is also
accessible via a C++ API.

• Core technology: CVC4 is based on the lazy/DPLL(T) approach.
As for satisfiability checking, CVC4 theoretically allows for different
SAT solvers to be plugged in, yet, up till now, only MiniSAT is sup-
ported.

• Theory solver: CVC4 uses approaches based on the modern DPLL(T)
paradigm, implementing different theory solvers for each theory. The
theory solver for uninterpreted functions is based on the congruence
closure algorithm. In case of the theory solver for linear arithmetic,
the implementation is based on the simplex method. The array theory
solver makes us of lazy instantiation of array axioms and the approach
used for the theory of bit-vectors combines lazy bit-blasting with in-
processing using an algebraic solver. For combining theories, the solver

29

Chapter 3 SMT Solver Comparison

relies on polite combination and care functions.

• Models and Proofs: CVC4 has functionalities for generating mod-
els and proofs. Its proof system is designed to have absolutely zero
footprint in memory and time, when switched off at compile-time. It
also supports the Logical Framework with Side Conditions (LFSC),
which is a high-level declarative language for defining proof systems
and proof objects for almost any logic. LFSC supports computational
side conditions on proof rules, which facilitate the design of proof sys-
tems [34]. Unfortunately, CVC4 does not yet support unsatisfiable
core extraction.

• Parallel solving: CVC4 provides an opportunity to run multiple
instances of CVC4 in different threads. Although, lemmas are not
shared between threads by default, there exists an option to do so.
With this option switched on, CVC4 is able to share lemmas of n
literals, excluding literals that are local to one thread and therefore,
ineligible for sharing. Operations can be interrupted, if results from
another thread make them irrelevant. Even though this is a great
feature, it is still in an experimental state and thus, should be used
with caution.

3.3 MathSAT 5

MathSAT 5 is a joint project of Fondazione Bruno Kessler (FBK-irst) and
University of Trento. It is implemented in C++ and freely available for
academic research and evaluation purposes. MathSAT 5’s default input for-
mat is SMT-LIB v2.0. Additionally, MathSAT 5 supports SMT-LIB v1.2 or
the DIMACS format. It supports most of the SMT-LIB logics, like that of
equality and uninterpreted functions (QF_UF), linear arithmetic over inte-
gers and reals (QF_LIA, QF_LRA), arrays (QF_AX), bitvectors (QF_BV)
and floating point numbers, as well as their combinations (QF_UFLIA,
QF_UFLRA, QF_AUFBV, QF_AUFLIA, QF_UFBV) [10]. Like CVC4,
MathSAT 5 and its predecessors have participated in every SMT-COMP
taken place from 2005 to 2014. In 2010, MathSAT 5 won in the divisions
QF_UFLRA and QF_UFLIA. Two years later in 2012, MathSAT 5 again
won QF_UFLIA [3]. MathSAT 5, like SMTInterpol, was one of only 2 par-

30

Chapter 3 SMT Solver Comparison

ticipants in the unsat core track of 2012’s SMT-COMP [14]. In 2014, Math-
SAT 5, like Z3, was a non-competitive participant in the SMT-COMP. Un-
like Z3, MathSAT 5 did not win any division. However, it did perform very
well, considering that it was not optimized for any of the benchmarks [13].

Technical characteristics

MathSAT 5 has been in constant development for many years to provide a
vast array of functionality for its users [10].

• User Interaction: Users can interact with MathSAT 5 via command
line, by providing an SMT-LIB script file, in either v1.2 or v2.0. The
solver also accepts input in the form of the DIMACS format. Further-
more, MathSAT 5 provides a C API, which is similar to the commands
of the SMT-LIB v2.0 language.

• CNF Converter: MathSAT 5’s constraint encoder converts every
input formula into its CNF.

• Core technology: By default, MathSAT 5’s core consists of a MiniSAT-
style SAT solver, which interacts with the theory solvers according to
the lazy/DPLL(T) procedure.

• Theory solver: MathSAT 5 consists of individual theory solvers
based on state-of-the-art algorithms. The solver for uninterpreted
functions is based on the congruence closure algorithm. As for the
linear arithmetic on integers and rationals a layered approach based
on simplex and branch & bound is used. For the floating point theory,
MathSAT 5 implements two different approaches. One is based on
either lazy or eager bit-blasting. The second and more recent one is
based on a combination of Interval Constraint Propagation for floating
point numbers and modern Conflict-Driven Clause Learning (CDCL)
SAT solvers. For the array theory solver MathSAT 5 uses axiom in-
stantiation. The bit-vector theory solver uses either lazy or eager bit-
blasting and the combination of theories is handled by MathSAT 5’s
delayed theory combination framework.

• Models and Proofs: In addition to deciding satisfiability, Math-
SAT 5 is able to enumerate models with different truth values for sat-
isfiable formulas, or a resolution proof and theory specific sub-proofs of

31

Chapter 3 SMT Solver Comparison

the T -lemmas for unsatisfiable formulas. Furthermore, it can extract
unsatisfiable cores or Craig interpolants [11].

Craig’s interpolation theorem describes a certain relationship between
two logical formulas. Lately, this theorem was introduced into the
world of SMT and soon became very popular. If we consider an SMT
problem for the background theory T and an ordered pair of formu-
las (A, B), such that, A and B are unsatisfiable under the theory
T (A ∧ B |=T⊥), then a Craig interpolant is a formula I for which
holds: [11]

– A satisfies I under the theory T : A |=T I,

– I and B are unsatisfiable under the theory T : I ∧B |=T⊥,

– I precedes, or is the same as A and I precedes, or is the same as
B: I � A and I � B

• AllSMT and Predicate Abstraction: MathSAT 5 implements an
AllSMT functionality. Meaning, for a satisfiable formula, it can effi-
ciently generate a complete set of theory-consistent partial assignments
satisfying the formula.

• Pluggable SAT solvers: MathSAT 5 allows its users to integrate an
external SAT solver of their choice.

3.4 SMTInterpol

SMTInterpol is an interpolation SMT solver developed by the University of
Freiburg. It is implemented in Java and available under the open source
software license GNU Lesser General Public License (LGPL) v3. As in-
put language SMTInterpol supports SMT-LIB v1.2 and v2.0, as well as
the DIMACS format. The solver supports the theories of uninterpreted
functions with equality (QF_UF), linear arithmetic over integers and reals
(QF_LIA, QF_LRA) and the combination of these theories (QF_UFLIA,
QF_UFLRA). SMTInterpol also participated in the SMT-COMP of 2011 in
both the main and the application track and was able to solve as many prob-
lems as the winning solver, but with an inferior runtime [9]. In 2012’s SMT-
COMP SMTInterpol was open-source winner for the theory of QF_UFLIA

32

Chapter 3 SMT Solver Comparison

and sole competitor in the proof generation track. Furthermore, SMTInter-
pol and MathSAT 5 were the only two solvers that participated in 2012’s
unsat core track. Meaning, in the field of proof generation and unsat core
extraction, SMTInterpol is one of leading SMT solvers available [14].

Technical characteristics

SMTInterpol is a very "young" SMT solver. However, it provides a wide
range of features for its users [9].

• User Interaction: SMTInterpol is SMT-LIB v1.2/v2.0 compliant.
Meaning, it supports the SMT-LIB script language. Furthermore, it
includes a parser for the DIMACS format. It also provides a Java
API modeled after the commands of this language. Users can issue
commands through an SMT-LIB file, use the standard input channel
of the solver, or use the Java API.

• CNF Converter: SMTInterpol converts every input formula into its
CNF.

• Core technology: SMTInterpol is based on the DPLL(T) paradigm
and interacts with its SAT solver according to the lazy approach. The
implemented SAT solver is a CDCL engine. Meaning, the SAT solver
is based on the DPLL algorithm, but with the one difference that its
backtracking is non-chronologically.

• Theory solver: SMTInterpol consists of two theory solvers, one for
uninterpreted functions, which is based on the congruence closure al-
gorithm, and one for linear arithmetic based on the simplex algorithm.
Furthermore, it uses the model-based theory combination procedure
to combine theories.

• Models and Proofs: The solver can return models for formulas
which are satisfiable. For unsatisfiable formulas it can produce res-
olution proofs from which it can extract unsatisfiable cores or Craig
interpolants.

33

Chapter 3 SMT Solver Comparison

3.5 veriT

VeriT was created in a joint work of the University of Nancy, Institut na-
tional de recherche en informatique et en automatique (INRIA) and Federal
University of Rio Grande do Norte (UFRN). It is an open-source tool writ-
ten in C and distributed under the BSD license. VeriT supports SMT-LIB
v2.0 and DIMACS as a valid input format [6]. Up to 2011 veriT provided
a decision procedure for the logic of quantifier-free formulas over uninter-
preted symbols (QF_UF), difference logic over integer and real numbers
(QF_IDL, QF_RDL), and the combination thereof (QF_UFIDL). Since
then the program has been completely rewritten to also support linear arith-
metic and quantifier reasoning capabilities. In 2014’ SMT-COMP veriT par-
ticipated in the divisions QF_IDL, QF_LIA, QF_LRA, QF_RDL, QF_UF
and in the combinations thereof QF_AUFLIA, QF_UFIDL, QF_UFLIA,
QF_UFLRA, as well as in the divisions allowing quantifiers ALIA, AUFLIA,
AUFLIRA, LIA, LRA, UF, UFLIA, UFLRA [21]. VeriT has yet to win a
division of an SMT-COMP, but that has low significance, since veriT is still
in its early tracks.

Technical characteristics

VeriT’s different features are discussed below [6].

• User Interaction: VeriT is compliant to SMT-LIB v2.0. In case,
one wants to use veriT as a SAT solver, the DIMACS format should
be the input language of choice. Of course, veriT is also accessible via
a C API.

• Core technology: The basis for the solver builds the lazy/DPLL(T)
approach. As integrated SAT solver, veriT makes use of MiniSAT.

• Theory solver: VeriT’s reasoning engine for linear arithmetic is
based on the Simplex method. The solver handling uninterpreted func-
tions is based on the congruence closure method. Furthermore, veriT
integrates some level of quantifier reasoning through E-matching. To
combine theories veriT makes use of the Nelson-Oppen theory combi-
nation method [21].

34

Chapter 3 SMT Solver Comparison

• Models and Proofs: The prover uses the MiniSAT solver to pro-
duce models for the Boolean abstaction of the input formula. It can
also produce proof traces for quantifier-free formulas containing unin-
terpreted functions and arithmetic. Unfortunately, veriT does not yet
support unsatisfiable core extraction.

3.6 Yices 2

Yices 2 is an efficient SMT solver developed by the Stanford Research Insti-
tute (SRI International). It is a closed-source software written in C and dis-
tributed free-of-charge for personal use under the terms of the Yices license.
Yices 2 can decide satisfiability for formulas consisting of quantifier-free com-
binations of uninterpreted functions with equality (QF_UF), linear arith-
metic over integers and reals (QF_LIA, QF_LRA), bit-vectors (QF_BV),
arrays (QF_AX) and integer and real difference logic (QF_IDL, QF_RDL)
and (QF_UFLIA, QF_UFLRA, QF_AUFBV, QF_AUFLIA, QF_UFBV
QF_UFIDL). These are all SMT-LIB logics, which do not involve quantifiers
and nonlinear arithmetic. Additionally, it supports tuples and enumeration
types. As input, Yices 2 supports SMT-LIB v1.2 and SMT-LIB v2.0 syntax,
as well as its own specification language [22]. Yices 2 and its predecessor have
participated in the SMT-COMPs of 2005 to 2009 and again in 2014. Further-
more, Yices 2 defeated Z3 in 2008, in the divisions QF_UF and QF_LRA.
In 2009, Yices 2 won in the divisions QF_AX, QF_UFLRA, QF_AUFLIA,
QF_UFLIA, QF_UF, QF_RDL and QF_LRA [3]. In 2014’s SMT-COMP
Yices 2 won the divisions QF_ALIA, QF_AUFLIA, QF_AX, QF_RDL,
QF_UF and QF_UFBV [13].

Technical characteristics

To see what sets Yices 2 apart from the other solvers, its specifics are listed
below [22].

• User Interaction: Yices 2 can read and process input in the form
of SMT-LIB notation, in either v1.2 or v2.0, as well as in its own
specification language. Furthermore, it is accessible via its C API.

• Core technology: Since Yices 2 is closed-source, one can only guess
the technology behind, although it is known that it is based on the

35

Chapter 3 SMT Solver Comparison

lazy/DPLL(T) approach and its custom SAT solver is based on the
CDCL procedure.

• Theory solver: Yices 2 currently implements four different theory
solvers configured for uninterpreted functions, linear arithmetic, ar-
rays and bit-vectors, respectively. It is possible to manually couple
these components with the SAT solver or remove them individually, if
not needed, to optimize runtime for specific problems. The solver for
uninterpreted functions is based on the congruence closure method.
Linear arithmetic theories are handled by the theory solver based on
the simplex algorithm. The decision procedure for the theory of arrays
uses lazy instantiation of array axioms. Bit-vectors are handled using
bit-blasting. To combine theories, Yices 2 makes use of the Nelson-
Oppen theory combination method.

• Models but no Proofs: Yices 2’s API provides functions to create
models, which map the formula’s symbols to concrete values. Unfor-
tunately, it does not support commands to get proofs or unsatisfiable
cores.

36

Chapter 4

Constraint Modeling
Languages

The comparison of SMT solvers in Chapter 3 was conducted to find suitable
candidates for an integration into the framework, to compare their perfor-
mance and execution time when debugging spreadsheets. However, another
important objective of the work is to find an efficient way to integrate the
SMT solvers into the framework. That is why in this chapter we will present
some constraint modeling languages and have a look at their applicability
and range of application. Additionally, we will provide an example for each
language to show the differences in their syntax.

4.1 MiniZinc

MiniZinc was created by the NICTA Optimisation Research Group with
the goal to become a standard for the Constraint Programming (CP) com-
munity. Unlike above described SMT solvers, MiniZinc is a medium-level
constraint modeling language, which is able to express most Constraint Sat-
isfaction Problems(CSPs) easily. On the contrary to MiniZinc, FlatZinc is
a low-level solver input language and the target language for MiniZinc. In
other words this means that problems are formulated in MiniZinc and then
converted into FlatZinc, before being passed to a solver capable of reading
FlatZinc. The MiniZinc developers also offer an Integrated Development
Environment (IDE), which supports users by writing MiniZinc models and
allows them to run these models. Additionally, they hold a yearly competi-

Chapter 4 Constraint Modeling Languages

tion called the MiniZinc Challenge, similar to the SMT-COMP. Until 2012
Gecode was the winner in all categories. However, in 2013, it only made
third place in one category, where it was beaten by Opturion CPX and
OR-Tools [25]. Unfortunately, MiniZinc and FlatZinc are barely supported
by SMT solvers. However, there exists a compiler, called fzn2smt, which
converts FlatZinc to the SMT-LIB language. Regrettably, the fzn2smt com-
piler only supports v1.2 of the SMT-LIB language and not the latest version.
From the SMT solvers described in Chapter 3 only MathSAT 5, SMTInter-
pol and Yices 2 support the SMT-LIB v1.2 language. Therefore, FlatZinc, in
combination with the fzn2smt compiler, could be used as an input language
for these three solvers only.

4-Queens expressed in MiniZinc

To get a feeling of how MiniZinc looks like, let us have a look at an example.
Example 4.1 shows the 4-Queens puzzle in the MiniZinc language. The first
two lines define the number of queens to place on the board and the board
itself. Line 3 sets the search strategy to search by selecting from the array
queens, the variable with the currently smallest domain (first_fail), and
try to set it to its median domain value (indomain_median), conducting a
complete search. The constraints, stating that queens have to be placed in
different rows, columns and diagonals, are defined in lines 4 to 6. The rest
of the code is needed to generate the output.

4.2 SMT-LIB v2.0

SMT-LIB version 2.0 was specified by Cesare Tinelli, Clark Barett and
Aaron Stump. On top of that specification Tinelli and Silvio Ranise cre-
ated the SMT-LIB language. It was developed for the specific goal to cre-
ate a common language across SMT solvers capable to express benchmark
problems. Since Barrett and Stump together with Leonardo DeMoura also
initiated the SMT-COMP, it was standing to reason to use the SMT-LIB
language as the standard input language for the competition’s benchmarks.
This led to the result that many developers adapted this language into
their SMT solver implementation, to be able to participate in the SMT-
COMP [12]. Unlike MiniZinc, the SMT-LIB language itself is a low-level
language. Meaning, it does not need to get translated, like MiniZinc gets

38

Chapter 4 Constraint Modeling Languages

Example 4.1 4-Queens puzzle in MiniZinc [27]
1: int: n = 4;
2: array[1..n] of var 1..n: queens; . declaration of the chess board

3: solve :: int_search(. sets search strategy
queens, . variables
first_fail, . chooses variable with smallest domain
indomain_median, . assigns median domain values
complete) . conducts a complete search

satisfy; . indicates a satisfaction problem

4: constraint all_different(queens); . constraints
5: constraint all_different([queens[i]+i | i in 1..n]) :: domain;
6: constraint all_different([queens[i]-i | i in 1..n]) :: domain;

7: output [show(queens) ++ "\n"] ++ . generate output
8: [
9: if j = 1 then
10: "\n"
11: else
12: ""
13: end if
14: ++

15: if fix(queens[i]) = j then
16: show_int(2,j)
17: else
18: "__"
19: end if
20: | i in 1..n, j in 1..n
21:] ++ ["\n"];

39

Chapter 4 Constraint Modeling Languages

converted into FlatZinc, since the solvers themselves support the language
in its original form. All SMT solvers described in Chapter 3, as well as many
other state-of-the-art SMT solvers, support the SMT-LIB v2.0 language.

4-Queens expressed in SMT-LIB v2.0

Again let us have a look at Example 4.2, which shows the 4-Queens puzzle
in SMT-LIB v2.0, to get a feel for the syntax. In SMT-LIB v2.0 we first
have to set a logic. This is done in the first line, where the logic is set to
quantifier-free linear integer arithmetic. Since QF_LIA does not include
the inequality operator 6= it is defined in line 2. Lines 3 to 6 declare four
different variables, each representing a queen of a specific row. For example,
q1 represents the position of the queen in the first row. q2 the position of
the queen in the second row, and so on. Lines 7 to 14 define the upper and
lower bounds of the variable’s value. The column constraints, stating that
all queens have to be placed in different columns, are defined in lines 15 to
20. Lines 21 to 32 define the diagonal constraints. Finally, the check-sat
function of line 33 tells the SMT solver to check for satisfiability. In case
the formula is satisfiable, the get-value function of line 34 tells the solver
to return valid values for the forwarded variables.

40

Chapter 4 Constraint Modeling Languages

Example 4.2 4-Queens puzzle in SMT-LIB v2.0
1: (set-logic QF_LIA) . sets the SMT-LIB logic

2: (define-fun != ((x Int) (y Int)) Bool (not (= x y))) . definiton of the
!= operator

3: (declare-fun q1 () Int) . declaration of the 4 different variables
4: (declare-fun q2 () Int)
5: (declare-fun q3 () Int)
6: (declare-fun q4 () Int)

7: (assert (>= q1 1)) . defines the bounds
8: (assert (<= q1 4))
9: (assert (>= q2 1))

10: (assert (<= q2 4))
11: (assert (>= q3 1))
12: (assert (<= q3 4))
13: (assert (>= q4 1))
14: (assert (<= q4 4))

15: (assert (!= q1 q2)) . column constraints
16: (assert (!= q1 q3))
17: (assert (!= q1 q4))
18: (assert (!= q2 q3))
19: (assert (!= q2 q4))
20: (assert (!= q3 q4))

21: (assert (!= q1 (+ q2 1))) . major diagonal constraints
22: (assert (!= q1 (+ q3 2)))
23: (assert (!= q1 (+ q4 3)))
24: (assert (!= q2 (+ q3 1)))
25: (assert (!= q2 (+ q4 2)))
26: (assert (!= q3 (+ q4 1)))

27: (assert (!= q1 (- q2 1))) . minor diagonal constraints
28: (assert (!= q1 (- q3 2)))
29: (assert (!= q1 (- q4 3)))
30: (assert (!= q2 (- q3 1)))
31: (assert (!= q2 (- q4 2)))
32: (assert (!= q3 (- q4 1)))

33: (check-sat) . checks for satisfiability
34: (get-value (q1 q2 q3 q4)) . returns valid values if satisfiable

41

Chapter 5

Conclusions and Future
Work

Considering the vast usage of spreadsheet programs by businesses and pri-
vate persons it is shocking that there are no common options to automat-
ically debug them. With this paper we build upon the work conducted by
a team from the Graz University of Technology where they introduced a
framework to compare performance and execution time of SMT- and con-
straint solvers when debugging spreadsheets. However, within the scope
of this work we solely focus on finding suitable candidates to expand their
framework with modern SMT solvers. On these grounds we give a general
overview of the topic SMT solvers, how they work and solve SMT prob-
lems. Furthermore, we conduct a comparison of different state-of-the-art
SMT solvers to find some that can compete with the already integrated
SMT solver, Z3, in terms of performance and execution time. To be able to
debug spreadsheets, it is important that the solvers can handle real numbers
in combination with non-linear arithmetic. Furthermore, the framework’s
spreadsheet debugging algorithm MCSes-U, which showed the best results
in combination with Z3, depends on unsatisfiable core extraction. There-
fore, it is equally important that the SMT solvers support that functionality.
To our surprise there exist not many SMT solvers supporting real numbers
and from those which do, even less support non-linear arithmetic. In fact
there are only six SMT solvers supporting reals that are actively in devel-
opment, namely CVC4, MathSAT 5, SMTInterpol, veriT, Yices 2 and Z3.
From these solvers only two, CVC4 and Z3, support non-linear arithmetic.

Chapter Conclusions and Future Work

Functionality to extract unsatisfiable cores is provided only by three solvers,
MathSAT 5, SMTInterpol and Z3. This leads to the result that currently
there exists no solver except Z3, which meets all our requirements. However,
Z3 is already integrated in the framework. Therefore, CVC4, even though
it is not able to extract unsatisfiable cores, is the most suitable candidate
for an expansion of the framework. The integration of CVC4, however, can
be conducted without great detriments, since next to the MCSes-U algo-
rithm, the framework also contains an implementation of its predecessor,
MCSes, which does not require unsatisfiable core extraction. Additionally,
during our research, we found two constraint modeling languages for SMT
solvers. However, we do not consider to use the MiniZinc modeling language
in combination with the fzn2smt compiler, since fzn2smt supports only the
SMT-LIB v1.2 language and the translation of the spreadsheet debugging
problems to MiniZinc, FlatZinc and lastly to SMT-LIB v1.2 would result in
a too complicated setup. Especially, when considering that all six described
solvers of Chapter 3 are SMT-LIB v2.0 compliant, the SMT-LIB v2.0 model-
ing language seems to be the better choice. With an initial translation of the
spreadsheet debugging problems into the SMT-LIB v2.0 modeling language,
we will be able to easily expand the framework with the CVC4 SMT solver.
Whether an initial translation, of the spreadsheet debugging problems into
the SMT-LIB v2.0 language, results in a too great rise in execution time
needs to be thoroughly tested. If so, the solver needs to be directly accessed
via its API to get rid of this overhead. Finally, and most importantly, af-
ter the solver is integrated in the framework, a number of tests need to be
conducted, to evaluate how it performs when debugging spreadsheets.

43

List of Figures

2.1 Overview of the SMT-LIB logics 6
2.2 Congruence closure example 9
2.3 Difference inequalities example 10
2.4 Example of a 4-queens puzzle 14
2.5 Solution of a map coloring problem 15
2.6 Illustration of the eager and lazy approach 18

List of Tables

2.1 Short explanation of SMT-LIB logics’ abbreviations. 7
2.2 Purification example of the Nelson-Oppen combination method 12

3.1 SMT solvers that support real numbers 25
3.2 Overview of SMT solvers supporting real numbers. 26
3.3 Overview of supported theories. 27

Acronyms

API Application Programming Interface.

BSD Berkeley Software Distribution.

CDCL Conflict-Driven Clause Learning.

CNF Conjunctive Normal Form.

CP Constraint Programming.

CSP Constraint Satisfaction Problem.

DAG Directed Acyclic Graph.

DIMACS Center for Discrete Mathematics and Theoretical Computer Sci-
ence.

DPLL Davis-Putnam-Logemann-Loveland.

DPLL(T) Davis-Putnam-Logemann-Loveland modulo Theories.

FOL First-Order Logic.

GPL GNU General Public License.

IDE Integrated Development Environment.

LFSC Logical Framework with Side Conditions.

LGPL GNU Lesser General Public License.

MSR-LA Microsoft Research License Agreement.

NP Nondeterministic Polynomial.

PL Propositional Logic.

SAT Boolean Satisfiability.

SMT Satisfiability Modulo Theories.

SMT-COMP Satisfiability Modulo Theories Competition.

SMT-LIB Satisfiability Modulo Theories Library.

Bibliography

[1] S. Ausserlechner, S. Fruhmann, W. Wieser, B. Hofer, R. Spork,
C. Muehlbacher, and F. Wotawa. The right choice matters! SMT
solving substantially improves model-based debugging of spreadsheets.
In Quality Software (QSIC), 2013 13th International Conference on
Quality Software, pages 139–148, July 2013.

[2] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana
Hadarean, Dejan Jovanović, Tim King, Andrew Reynolds, and Cesare
Tinelli. CVC4. In Proceedings of the 23rd International Conference on
Computer Aided Verification, CAV’11, pages 171–177, Berlin, Heidel-
berg, 2011. Springer-Verlag.

[3] Clark Barrett, Morgan Deters, Leonardo Mendonça de Moura, Al-
bert Oliveras, and Aaron Stump. 6 years of SMT-COMP. Journal
of Automated Reasoning, 50(3):243–277, 2013.

[4] Clark Barrett, Aaron Stump, and Cesare Tinelli. The Satisfiability
Modulo Theories Library (SMT-LIB). Website, 2014. visited on July
11th 2014.

[5] Nikolaj Bjørner and Leonardo de Moura. System Description: Z3 0.1,
2007. System Description for the 2007 SMT Competition.

[6] Thomas Bouton, Diego Caminha B. de Oliveira, David Déharbe, and
Pascal Fontaine. veriT: an open, trustable and efficient SMT-solver.
In Automated Deduction - CADE-22, volume 5663 of Lecture Notes in
Computer Science, pages 151–156. Springer-Verlag, 2009.

[7] Roberto Bruttomesso. Satisfiability modulo theories: a pragmatic in-
troduction. Lecture Notes, 2012.

[8] Roberto Bruttomesso, Alessandro Cimatti, Anders FranzÃ c©n, Al-
berto Griggio, and Roberto Sebastiani. Delayed theory combination
vs. nelson-oppen for satisfiability modulo theories: a comparative anal-
ysis. Annals of Mathematics and Artificial Intelligence, 55(1-2):63–99,
2009.

[9] Jürgen Christ, Jochen Hoenicke, and Alexander Nutz. SMTInterpol:
An interpolating SMT solver. In Model Checking Software, volume
7385 of Lecture Notes in Computer Science, pages 248–254. Springer
Berlin Heidelberg, 2012.

[10] Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaafsma, and
Roberto Sebastiani. The MathSAT5 SMT solver. In Tools and
Algorithms for the Construction and Analysis of Systems, volume 7795
of Lecture Notes in Computer Science, pages 93–107. Springer Berlin
Heidelberg, 2013.

[11] Alessandro Cimatti, Alberto Griggio, and Roberto Sebastiani. Efficient
generation of craig interpolants in satisfiability modulo theories. ACM
Transactions on Computational Logic, 12(1):7:1–7:54, November 2010.

[12] David Cok. The SMT-LIBv2 language and tools: A tutorial. Tutorial,
2013.

[13] David Cok, David Deharbe, and Tjark Weber. SMT-COMP 2014. Web-
site, 2014. visited on July 11th 2014.

[14] David R. Cok, Alberto Griggio, Roberto Bruttomesso, and Morgan
Deters. The 2012 SMT Competition. In SMT 2012, volume 20 of EPiC
Series, pages 131–142. EasyChair, 2012.

[15] Jeremy Condit and Matthew Harren. Congruence closure. Lecture
Notes, 2004.

[16] Martin Davis, George Logemann, and Donald Loveland. A machine
program for theorem-proving. Communications of the ACM, 5(7):394–
397, July 1962.

[17] Martin Davis and Hilary Putnam. A computing procedure for quantifi-
cation theory. Journal of the ACM, 7(3):201–215, July 1960.

[18] Leonardo de Moura and Nikolaj Bjørner. Model-based theory combina-
tion. Electronic Notes in Theoretical Computer Science, 198(2):37–49,
May 2008.

[19] Leonardo de Moura and Nikolaj Bjørner. Proofs and refutations, and
Z3. In Logic for Programming Artificial Intelligence and Reasoning
Workshops, volume 418 of CEUR Workshop Proceedings. CEUR-
WS.org, 2008.

[20] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT
solver. In Proceedings of the Theory and Practice of Software, 14th
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, TACAS’08/ETAPS’08, pages 337–340, Berlin,
Heidelberg, 2008. Springer-Verlag.

[21] David Déharbe, Pablo Federico Dobal, and Pascal Fontaine. veriT:
System description for SMT-COMP 2014, 2014. System Description
for the 2014 SMT Competition.

[22] Bruno Dutertre. Yices 2 Manual. SRI International, Menlo Park, CA,
March 2014.

[23] Bruno Dutertre and Leonardo de Moura. A fast linear-arithmetic solver
for DPLL(T). In Proceedings of the 18th International Conference on
Computer Aided Verification, CAV’06, pages 81–94, Berlin, Heidelberg,
2006. Springer-Verlag.

[24] Alessandro Farinelli. Propositional and first order logic. Lecture Notes,
2010.

[25] NICTA Optimisation Research Group. MiniZinc and FlatZinc. Website,
2014. visited on July 11th 2014.

[26] The ACSys Group. CVC4 User Manual. New York University and
University of Iowa, 2014.

[27] Hakan Kjellerstrand. N-Queens problem in MiniZinc. Website - Exam-
ple, 2014. visited on July 11th 2014.

[28] Mark H. Liffiton and Karem A. Sakallah. Generalizing core-guided
max-sat. In Theory and Applications of Satisfiability Testing - SAT

2009, volume 5584 of Lecture Notes in Computer Science, pages 481–
494. Springer Berlin Heidelberg, 2009.

[29] Leonardo De Moura and Nikolaj Bjørner. Satisfiability modulo theories:
An appetizer. In Formal Methods: Foundations and Applications, pages
23–36. Springer-Verlag, Berlin, Heidelberg, 2009.

[30] Leonardo De Moura and Nikolaj Bjørner. Satisfiability modulo theories:
Introduction and applications. Communications of the ACM, 54(9):69–
77, September 2011.

[31] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT
and SAT modulo theories: From an abstract davis–putnam–logemann–
loveland procedure to DPLL(T). Journal of the ACM, 53(6):937–977,
November 2006.

[32] Albert Oliveras and Enric Rodriguez-Carbonell. Combining decision
procedures: The Nelson-Oppen approach. Lecture Notes, 2009.

[33] Microsoft Research. Z3 website. Website, 2014. visited on July 11th
2014.

[34] Andrew Reynolds, Liana Hadarean, Cesare Tinelli, Yeting Ge, Aaron
Stump, and Clark Barrett. Comparing proof systems for linear
real arithmetic with LFSC. In Proceedings of the 8th International
Workshop on Satisfiability Modulo Theories, Edinburgh, Scotland, July
2010.

[35] Aaron Stump, Tjark Weber, and David Cok. Progress report on the
2013 SMT evaluation. Presentation Slides, 2013.

[36] Lintao Zhang. SAT-Solving: From Davis-Putnam to Zchaff and Be-
yond. Presentation Slides, 2009.

	Introduction
	Satisfiability Modulo Theories Solver
	First-order Logic
	Satisfiability Modulo Theories Problem
	Theories
	Basic Theory Definitions
	Uninterpreted functions with equality
	Linear arithmetic
	Difference arithmetic
	Non-linear arithmetic
	Bit-vectors
	Arrays
	Quantified Theories
	Theory Combination

	Famous Problems expressed as SMT
	Resolution of SMT
	DPLL and DPLL(T)
	DPLL paradigm
	DPLL(T) paradigm

	SMT Solver Comparison
	Z3
	CVC4
	MathSAT 5
	SMTInterpol
	veriT
	Yices 2

	Constraint Modeling Languages
	MiniZinc
	SMT-LIB v2.0

	Conclusions and Future Work
	List of Figures
	List of Tables
	Acronyms
	Bibliography

