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Abstract

The use of spreadsheets is the most popular form of end-user programming. As
spreadsheets are in general not created and maintained by professional program-
mers, error rates are high. As a remedy, many approaches were proposed to avoid,
find, and fix errors in spreadsheets. Although some literature on the current overall
state of spreadsheet quality assurance (QA) is available, little work was published
which gives an in-depth comparison of specific approaches. In this paper, we provide
a more comprehensive survey of the proposed literature covering two chosen static
spreadsheet QA techniques: The topics of spreadsheet smells and unit-checking of
spreadsheets. We define the concept of spreadsheet smells and present a comprehen-
sive catalogue containing each smell proposed in scientific literature. We highlight
groups of related smells, remark on the similarities and interactions within these
groups, and state how identified smells can be utilized. As a novel finding, we point
out an identified gap within the currently available catalogue. With regard to unit-
checking, we review the development of this principle as applied to spreadsheets. We
identify and describe concepts commonly used by concerning approaches, elaborate
on how those concepts can be expanded on, and name a view examples. Based on
this review, we conclude on problems and provide suggestions for future work within
both of the surveyed fields.

Keywords
Spreadsheets; Static Analysis; Spreadsheet Smells; Refactoring; Automatic Error
Detection; Unit; Dimension; Debugging;
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1. Introduction

Spreadsheets play an important part in today’s economy. In 2012, Panko and Port
[2012] estimated that 60% of the 90 million people using computers at work in
the USA used spreadsheets and databases. Moreover, a considerable fraction of
knowledge workers even considered their End User Computing application of choice
as mission critical. Failure, unavailability, or incorrectness of such an application
results in meaningful economic losses. However, the study also revealed that only
15% of the personal working with spreadsheets and databases is made up of trained
programmers. Poor spreadsheet quality and suggested error-rates of up to 90% are
the consequences.

As a countermeasure, there has been extensive research into improving QA for
spreadsheet applications in the last decade. Various approaches to prevent, detect,
and fix errors within spreadsheets have been proposed. In particular, numerous
approaches were made to adopt common techniques for code quality improvement
into the spreadsheet domain. Jannach et al. provided a comprehensive overview of
noteworthy approaches to improve spreadsheet quality [2014].

Although considerable research has been spent on concrete approaches to im-
prove spreadsheet quality assurance (QA), less attention has been paid to a more
general perspective of the topic. In particular, research highlighting and compar-
ing different approaches following a similar methodology is sparse. The result of
such research can provide valuable information to derive best practices and identify
gaps within the specific field. We perceive the field of static spreadsheet analysis,
approaches which adapt and apply techniques of static code analysis to spread-
sheet structures, to be of interest with that regard. Consequently, the aim of the
present paper is to give an extensive overview and comparison of two specific static

9



analysis techniques for spreadsheets: spreadsheet smells and (label-based) unit- and
dimension-checking of spreadsheets.

The remainder of this paper is as follows: In Section 2, we introduce the notion of
spreadsheet smells. In daily life, if we perceive that something stinks, we are more
suspicious of the quality of the object in question. Likewise, spreadsheet smells
point out possible quality issues in spreadsheets. We present a complete catalogue
of spreadsheet smells as they were proposed within the scientific community. For
each smell within the catalogue, we provide detailed information based on a defined
set of criteria. We highlight similarities and interactions between specific smells. We
conclude our elaboration of spreadsheet smells in describing how the concept has
been utilized throughout the present literature.

In Section 3, we summarize proposed efforts to adapt unit- and dimension-
checking-techniques to the requirements of spreadsheet systems. We continue by
describing the concepts commonly encountered within these proposed approaches.
Lastly, we remark on how further concepts can be derived based on the notion of
unit-checking of spreadsheets and provide concrete examples.

Section 4 concludes the paper and suggests topics for future work.
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2. Spreadsheet Smells

The idea of spreadsheet smells is based on the notion of code smells, which was
introduced in [Fowler, 1999]. In his work, Fowler promoted refactoring as a method
to improve the quality of object-oriented code. However, no common guidelines as
to when to refactor were readily available at that time. Therefore, Fowler proposed
the utilization of a new concept for that purpose: code smells. According to Fowler’s
definition, a bad smell is a certain circumstance within object-oriented source code
which suggests a certain refactoring. As such, a smell is defined by a specific antic-
ipated flaw within the structure of object-oriented code. Duplicated code sections
in unrelated classes are an example of such a flaw. In his work, Fowler proposed a
list of 22 bad smells concerning object-oriented source code.

Spreadsheet smells are a recent development within the field of static spreadsheet
analysis. As the name suggests, this method revolves around the conception and
detection of bad smells within a spreadsheet. Cells and worksheets that contain a
smell are either more likely to contain a fault or harder to maintain than non-smelly
ones. Therefore, spreadsheet smells define a quantifiable measure of suspiciousness
towards specific cells and worksheets.

Code smells do not directly indicate faulty code statements by themselves. In-
stead, code smells indicate code segments which are hard to comprehend, hard
to maintain, or error-prone. Likewise, spreadsheet smells in general do not indi-
cate faulty cells by themselves. They rather highlight localized quality-issues in a
spreadsheet.
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2.1 Known Spreadsheet Smells

In recent years, a number of different approaches have been made to adopt the
notion of bad smells into the spreadsheet domain. In doing so, those approaches
contributed to the set of bad spreadsheet smells known to the scientific community.
In the following section, we present this collection of known spreadsheet smells. For
each smell within the set, we discuss the following aspects:

• Origin & Intent: We name the origin and intent of the smell.

• Target: We define which parts of a spreadsheet can contain the smell.

• Detection: We describe how the smell can be detected.

• Example: We provide an example, based on an exemplary spreadsheet pre-
sented in Figure 2.1.

• Cause: We state possible causes of the smell.

• Consequences: We elaborate on which issues may be implied by the smell.

• Alleviation: We suggest ways to remove the smell.

To illustrate how each smell may affect a spreadsheet in practice, we provide an
example spreadsheet containing an occurrence of each discussed smell in Figure 2.1.
The example spreadsheet describes the internal processes of a basic warehouse com-
pany. Figure 2.1a depicts the Sales worksheet, aggregating product sales and rev-
enues per period. Figure 2.1b illustrates the Employees worksheet, containing em-
ployee data and summarizing working hours. Lastly, Figure 2.1c presents the Totals
worksheet, combining revenue and expenses to calculate total and periodic results
as well as a productivity quota for the current period.

The following definitions are required to describe the detection processes of cer-
tain smells:

Cell C represents a spreadsheet cell.

Worksheet The type W represents a worksheet. It is defined as a set
which contains all cells contained in a worksheet.
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Spreadsheet The type S represents a spreadsheet. It is defined as a set
which contains all worksheets W contained in a spreadsheet.

Precedents P denotes all the predecessors, of a specific formula. Pre-
decessors are cells which a formula refers to. Thus, P is a
function of type C → {C}.

Connection A tuple of cells (A, B) form a connection K if they adhere to
the relation A ∈ P(B).

Connection Set KS denotes the set which contains all connections of a spread-
sheet.

2.1.1 Standard Deviation

Origin & Intent. Standard Deviation was first proposed by Cunha et al. in [2012b].
The smell is designed to detect statistical outliers within groups of numeric cells.

Target. Standard Deviation detects smelly numerical values. Thus, it can only
be applied to cells which contain such values. Moreover, the smell is usually applied
to input cells only. Numeric results of formula cells are ignored in the detection
process.

Detection. Detection of the Standard Deviation smell relies on the statistical
properties of a group of cells. To that end, groups of neighbouring cells in either
column or row orientation are formed. For each occurring group, the normal distri-
bution model of its contained numeric values is calculated. Based on this model, cells
within the group are marked as smelly, if their cell value deviates by two standard
deviations (95,4%) from the calculated average of the group.

Example. An occurrence of the Standard Deviation smell can be seen in cell B3
of the Sales worksheet. This worksheet is depicted in Figure 2.1a. We calculated
the average of the values within column B to be 9.21E8 and the standard deviation
of the values in the column to be 2.90E8. Therefore, values within the column are
expected to lie within the range [3.41E8,1.50E9]. However, cell B3 contains the value
1.08E3. This lies outside the expected range. Thus, cell B3 is marked as smelly.
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(a) Sales worksheet.

(b) Employees worksheet.

(c) Totals worksheet.

Figure 2.1: Warehouse example spreadsheet.
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Cause. Standard Deviation indicates the occurrence of unexpected numeric cell
values. Such values are usually introduced due to errors in the stage of data entry.
Smelly numerical values also may be a result of ill-considered copy & paste opera-
tions. Furthermore, accidental alteration of cell values throughout the lifecycle of a
spreadsheet can introduce deviating values. Poor spreadsheet layout may also cause
the smell. For example, a row or column may contain multiple successive groups
of related numerical values to be computed alongside. However, such groups do
not necessary follow the same mathematical distribution. Without some form of
boundary between such value groups, some values within the row or column may be
marked as smelly as a result.

Consequences. The Standard Deviation smell affects numerical input cells. Spread-
sheet users rely on the values provided by this type of cell to conduct various com-
putations and statistic analyses. Therefore, a deviating input value will in most
cases propagate throughout the spreadsheet and result in an error in at least one of
the output values.

Alleviation. Correction of a cell which is tagged with the Standard Deviation
smell depends on the circumstance which caused the cell to be smelly. In every case,
the cell value should be examined at first. If a faulty cell value is detected, correcting
it will usually also remove the smell. If the cell value was not faulty, or the cell is still
indicated as smelly after correcting the value, structural considerations need to be
applied. As described before, Standard Deviation may be detected due to successive
groups of numeric values within the same row or column. In such cases, we suggest
structural refactoring of the worksheet in question: Either introduce some form of
boundary between the value groups, or split the groups into corresponding tables.

2.1.2 Empty Cell

Origin & Intent. The smell Empty Cell has its origins in [Cunha et al., 2012b]. In
their work, Cunha et al. proposed this smell to indicate cells which are empty, but
occur within a context which suggests that the cell should contain a value.

Target. Empty Cell detects smelly empty cells. Consequently, it can only be
applied to cells that do not contain any values, labels, formulas or errors.
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Detection. This smell intends to detect empty cells occurring in a suspicious
context. Such a context is described by a number of neighbouring cells that do not
contain any other empty cells. Cunha et al. proposed to utilize windows of five
cells for this purpose. During smell detection, for each row or column every possible
window of 5 neighbouring cells is considered and verified whether it holds precisely
one empty cell. If an empty cell only occurs within such groups, it is indicated as
smelly.

Example. We can see, that cell F6 of the Sales worksheet, depicted in Figure 2.1a,
is empty. Additionally, it is exclusively contained in 5-cell-neighbourhoods that do
not contain any other empty cells. As a result, for this cell the Empty Cell smell
is signalled. Notice that, for example, cells in row 14 also contain empty cells.
However, those cells occur in neighbourhoods with other empty cells. Subsequently,
they are not marked as smelly.

Cause. The Empty Cell smell indicates empty cells which are surrounded by non-
empty cells. Empty cells within a table are usually introduced by mistake. During
data entry or spreadsheet creation, sometimes a cell is overlooked by accident. An
empty cell within a table may also be the result of an ill-considered copy & paste
operation. Lastly, the empty cell may have been introduced by an accidental delete
operation later within the lifecycle of the spreadsheet.

Consequences. Empty Cell indicates empty spots within the bulk of a worksheet.
Cells within this area usually contain numeric input values or formulas. Those
formulas either calculate final results or are themselves referenced by other formula
cells. Thus, empty cells within those areas usually lead to missing or erroneous
interim and final results.

Alleviation. In order to remove the Empty Cell smell from a cell, we suggest to
check whether the cell in question should indeed be empty. If this is not the case,
determine the missing content and insert it. Suggestions for the missing content
may be automatically derived from the surrounding context and presented to the
user.
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2.1.3 Pattern Finder

Origin & Intent. The Pattern Finder smell was proposed by Cunha et al. in [2012b].
It can be seen as extension of the Empty Cell smell. Instead of focussing on empty
cells, Pattern Finder attempts to detect more general deviations of expected cell
types: for example, a label cell situated in a neighbourhood of cells containing
numeric values.

Target. Pattern Finder attempts to detect unexpected deviations of occurring
cell types within rows or columns of a worksheet. The focus thereby lies on the
deviation itself, rather than the specific type. Thus, every cell within the active
area of a worksheet is a potential target for the detection of the Pattern Finder
smell.

Detection. The method of detecting the Pattern Finder smell is based on the
methods that are applied to detect the Empty Cell smell. Detection of Pattern
Finder relies on the inspection of the local neighbourhood of the cell in question. To
that end, Cunha et al. proposed to form windows of 4 neighbouring cells for each
row or column in the spreadsheet. For each of those windows, we need to check
whether it contains exactly one cell containing a different type than the remainder
of the group. If such a cell is detected, it is flagged as smelly.

Example. In the Sales worksheet, illustrated in Figure 2.1a, cell D6 contains the
String "o". This cell thus has the cell type label. However, the surrounding cells in
the same column contain number values. Therefore, D6 is indicated as smelly. It is
likely that the cell should have contained the number 0 instead of the label "o": a
typing error occurred.

Cause. Cells which are flagged with the Pattern Finder smell usually indicate
some form of inconsistency within the spreadsheet. This inconsistency can either
be introduced due to an incomplete copy operation, or due to a mistake during
the creation of the spreadsheet. Cells marked with the Pattern Finder smell may
also contain temporary place-holder values, which were intended to be replaced
eventually.

Consequences. Pattern Finder indicates inconsistencies within the bulk of a
spreadsheet table. Cells within this area usually contain numeric input values or
formulas which calculate interim results and are themselves referenced by other
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formula cells either directly or by use of area-operations. Thus, inconsistencies
within those areas usually lead to erroneous interim and final results.

Alleviation. As with Empty Cell, removal of the Pattern Finder smell is a
straightforward process. We suggest to check whether the indicated cell holds the
correct value type. Otherwise, determine which type and value should be contained
and replace the faulty value. Suggestions for the missing content may be automati-
cally derived from the surrounding context and presented to the user.

2.1.4 String Distance

Origin & Intent. The String Distance smell was first introduced in [Cunha et al.,
2012b]. Cunha et al. noticed, that typographical errors are frequently introduced
during data input by typing. Consequently, they implemented the String Distance
smell in order to detect typographical errors within spreadsheets. To that end,
the smell indicates string cells which differ minimally from other strings contained
within the same worksheet.

Target. String Distance is a spreadsheet smell which detects smelly string cells.
As such, only cells containing string values may contain this smell. Other cell types,
like formulas containing strings, are not taken into consideration during the detection
of this smell.

Detection. In order to detect the String Distance smell, Cunha et al. proposed
to utilize an algorithm introduced by Levenshtein in [1966]. This algorithm takes
two strings as input and calculates the number of single transformation operations
which need to be applied to one of the strings in order to transform it into the other.
During the detection process, this algorithm is applied to each pair of strings within
a row or column. If such a pair of strings only differs by one transformation, the
string in question is signalled as smelly. Cunha et al. suggest to limit the detection
to strings that contain more than three characters. Moreover, String Distance may
indicate ascending numeric and alphanumeric designations within neighbouring cells
as smelly, e.g. cells in a row or column that contain the values Product 1, Product 2
et cetera. Sequences like this are common within spreadsheets and should therefore
be excluded from the detection of this smell.
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Example. The cell C9 of the Sales worksheet, displayed in Figure 2.1a, contains
the String Distance smell. This cell contains the label "Productt two". By removal
of a ’t’ character, this string can be transformed to the label contained in cells C6
to C8. Removal of a character only amounts to a single operation. Consequently,
cell C9 is indicated as smelly.

Cause. Cells which contain the String Distance smell contain string values which
differ minimally from other occurring strings. Such instances usually indicate faults
which were introduced by typing errors during data entry. A cell may also be smelly
of the String Distance smell as result of an accidental alteration of a cell value later
on in the lifecycle of a spreadsheet.

Consequences. String cells are typically used as labels and headers within a
spreadsheet. In such cases, relating faults may predominantly lessen the accountabil-
ity of a spreadsheet. However, string values can also be used as part of conditional
branches of a formula, or to encode values within the same row or column using a
LOOKUP operator. According faults directly affect the corresponding calculations
and lead to erroneous results.

Alleviation. Removal of the String Distance smell is a straightforward process.
Simply check whether the string value contained in the indicated cell is correct.
Otherwise, determine which string should be contained and insert it, replacing the
faulty value. Suggestions as to which string should be contained may be automati-
cally derived from the surrounding context and presented to the user, or even applied
automatically.

2.1.5 Reference to Empty Cells

Origin & Intent. Reference to Empty Cells is a spreadsheet smell that was defined
by Cunha et al. [2012b]. They pointed out that formulas which include references
to empty cells are a typical source of errors in spreadsheets. Consequently, they
introduced the Reference to Empty Cells smell to indicate such occurrences.

Target. The smell indicates formula cells which contain at least one reference to
an empty cell. As such, only formula cells can contain this smell. Other cell types
are not taken into consideration during the detection process of Reference to Empty
Cells.
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Detection. Detection of Reference to Empty Cells requires for every cell’s formula
within the spreadsheet to be analysed. For each formula, the cells that are referenced
within the formula are determined. If one of those referred cells does not contain a
value, the cell containing the formula in question is flagged as smelly with Reference
to Empty Cells.

Example. Figure 2.1a depicts the Sales worksheet of our example. The formula
at cell G6 of this worksheet contains a reference to the cell F6 which does not contain
any value. As a result, G6 is marked as smelly.

Cause. Formula cells which are indicated to be smelly contain at least one
reference that points to an empty cell. Such references may be introduced due to
errors when entering formulas during spreadsheet creation. References to empty
cells may also occur as a result of ill-considered copy & paste operations. When
a formula cell containing a non-static reference is copied, the reference indices are
updated according to the position difference between base and target cells of the copy
operation. However, it is not guaranteed that the value type of the newly referenced
cell complies with the requirements of the formula. Lastly, accidental alterations
during the lifecycle of a spreadsheet may introduce references to empty cells into a
formula or delete values from cells which are referenced by existing formulas.

Consequences. Formulas within spreadsheets are mainly utilized to conduct some
form of calculation or statistical analysis based on provided input values. References
to empty cells within a formula usually are not evaluated as errors. Instead, ref-
erences to empty cells are interpreted as the numeric value 0, or an empty string,
based on the related operator within the formula. However, formulas require mean-
ingful input data at the location of their references to fulfil their intended function.
Thus, a formula containing a reference to an empty cell may be syntactically valid,
but will usually yield an erroneous result.

Alleviation. Removal of the Reference to Empty Cell smell requires analysis of
the indicated formula as well as analysis of its references. In a first step, we suggest
to check each reference as to whether it leads to an empty cell. If so, verify the
correctness of the reference. If the reference is faulty, determine which cell should
be pointed to instead and update the reference accordingly. If the reference itself
is correct, examine the target cell in question. Determine which value or formula
is missing and update the cell’s content accordingly. Suggestions as to how the
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reference could be corrected may be automatically derived from the surrounding
context and presented to the user.

2.1.6 Quasi-Functional Dependencies

Origin & Intent. The spreadsheet smell Quasi-Functional Dependencies (QFD) was
originally proposed by Cunha et al. in [2012b]. The idea for and the detection
mechanism of this smell is based on the notion of Quasi-Functional Dependencies as
described in [Abraham and Erwig, 2006a]. In general, a quasi-functional dependency
is established by values of multiple rows or columns that are functional related to
each other. The Quasi-Functional Dependencies smell indicates violations of such
relations.

Target. QFD relies on the detection and cataloguing of functional dependencies
between column or row values. Subsequently, only cells which contain values are
relevant for this smell. Empty cells and cells which contain errors are not taken
into consideration. Indeed, formula cells are ignored as well, as they do not contain
constant cell values to form quasi-functional dependencies with.

Detection. Detection of the Quasi-Functional Dependencies smell requires the
recognition of functional dependencies between at least two columns of a worksheet.
Cunha et al. based their approach on [Chiang and Miller, 2008]. In this paper
a more general version of the Functional Dependencies principle is presented and
utilized to discern dirty values. Smell detection involves collecting and matching the
entirety of all occurring spreadsheet values. Based on the results of the matching
step, quasi-functional dependencies are synthesized. Lastly, existing quasi-functional
dependencies are evaluated, and cell values that deviate from expected results are
indicated as smelly.

Example. An occurrence of QFD can be found in cell F12 of the Sales worksheet,
depicted in Figure 2.1a. Values within the columns A, B, C, and F follow a Quasi-
Functional Dependency. The value of one cell within those columns can be inferred
from specific other values within the other columns. For example, in rows 10, 11,
and 13 the columns always contain the respective values 7, 1005237614, Product
Three, and $19.99. However, cell F12 does not follow this established relation. It
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contains the numeral value $18.99, while the values of the other columns infer the
expected value of $19.99. This is suggestive of a typing error.

Cause. Cells which contain QFD usually indicate some form of inconsistency
within the spreadsheet. A typing error or carelessness during data entry may be the
cause of such faults. In addition, wrong or incomplete copy & paste may also lead
to the introduction of values which smell of Quasi-Functional Dependencies.

Consequences. The Quasi-Functional Dependencies smell indicates an inconsis-
tency within a row or column that contains input data of a spreadsheet. Such cells
are usually referenced by formula cells either directly or by use of area-operations.
As a result, inconsistencies indicated by QFD usually lead to erroneous interim and
final calculation results.

Alleviation. Removal of a Quasi-Functional Dependencies smell is a straightfor-
ward process. Simply validate the value which is contained in the indicated cell. If
the value is faulty, determine which value should have been contained and replace
the faulty content. As only one specific value which alleviates the smell can be
inferred, this refactoring may be provided as automated process.

2.1.7 Multiple Operations

Origin & Intent. Multiple Operations is a spreadsheet smell which was introduced
by Hermans et al. in [2012b]. The smell is based on one of the most well-known
code smells: the Long Method. Fowler proposed this code smell in [1999] as a way
to indicate methods that feature an excessive number of statements. Such methods
usually do not fulfil a single, specific purpose, but rather combine multiple tasks.
However, the combination of tasks within a single method renders the method in
question less comprehensible and should therefore be avoided. Similarly, formulas
within a spreadsheet environment should feature a limited number of operations in
order to facilitate their accountability. Therefore, Hermans et al. introduced the
Multiple Operations smell to indicate formulas which feature an excessive number
of operations.

Target. The spreadsheet smell Multiple Operations intends to find formula cells
that contain an excessive number of operations. As such, only cells which contain
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formulas are relevant for detecting this smell. Other cell types are not taken into
consideration.

Detection. For the detection of the Multiple Operations smell, Hermans et al.
suggest to count the number of operations each formula contains. Based on an
evaluation of the EUSES spreadsheet corpus [Fisher and Rothermel, 2005], cells
should be indicated as smelly as soon as a formula contains more than 4 operations.

Example. An occurrence of the Multiple Operations smell can be seen within cell
D22 of the Employees worksheet, depicted in Figure 2.1b. The formula contained
in this cell consists of 8 distinct operations. This number exceeds the suggested
threshold for the detection of the Multiple Operations smell. Consequently, cell
D22 is indicated as smelly.

Cause. Examination results of Hermans et al. suggest that the introduction of
cells containing the Multiple Operations smell is an evolutionary process. Initially,
formula cells do not contain excessive numbers of operations. However, spreadsheets
are often target of recurring adaptations. Those adaptations lead to addition of
operations to formulas as the need arises. Especially when working under time
constraints, readability of a spreadsheet is often sacrificed in order to achieve a
working solution.

Consequences. Cells that are flagged by the Multiple Operations smell contain
a large number of operations. As the number of operations increases, the meaning
of a formula becomes harder to understand. This circumstance is intensified by the
fact that long formulas often are displayed cut-off, as they require more screen space
than available.

Alleviation. In order to alleviate the Multiple Operations smell of a formula,
we suggest refactoring: Split up the necessary calculations within the formula, dis-
tribute them over multiple cells and link them using references. As no additional
knowledge or user-input is required, this refactoring may be provided as automated
process. In some cases, multiple used operations may be replaced by a single area-
supporting operation like SUM.
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2.1.8 Multiple References

Origin & Intent. The spreadsheet smell Multiple References was first proposed in
[Hermans et al., 2012b]. Hermans et al. adapted the notion from a similar code
smell: Multiple References. This code smell was presented by Fowler in [1999].
It indicates method definitions that feature an excessive number of parameters.
Comprehensibility of a method definition declines as the number of parameters it
requires increases. Likewise, the clarity of a formula declines as the number of
references it features increases. Therefore, Hermans et al. suggested to utilize the
Multiple References smell to indicate formula cells which require an excessive number
of references.

Target. Multiple References points out formula cells which rely on a large number
of different references. As a result, formula cells are exclusively relevant for the
detection of this smell. Other cell types are not taken into consideration.

Detection. For detecting the Multiple References smell, Hermans et al. suggest
to count the number of references to areas and other cells within a specific formula.
Based on an evaluation of the EUSES spreadsheet corpus [Fisher and Rothermel,
2005], cells should be indicated as smelly as soon as they contain more than 3
references.

Example. Figure 2.1b depicts the Employees worksheet of our example. Cell D22
of this worksheet contains a formula referencing 6 unique areas and different cells.
Consequently, it exceeds the suggested threshold for the detection of the Multiple
References smell and is highlighted as smelly.

Cause. The introduction of Multiple References usually follows the same evo-
lutionary process that leads to the introduction of the Multiple Operations smell.
Formula cells normally start out requiring a limited number of references. How-
ever, during the lifecycle of the spreadsheet, adaptations are made to expand the
functionality of those formulas which often require additional references.

Consequences. When contemplating spreadsheet formulas, the more single refer-
ences to other cells they contain, the harder to comprehend they become. Similar to
the Multiple Operations smell, this circumstance is intensified due to the fact that
long formulas are usually not displayed completely, since they require more screen
space than available.
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Alleviation. In order to remove the Multiple References smell, we suggest to
distribute the formula contained within the cell over multiple different cells, each
containing a subset of the required operations and references. As no additional
knowledge or user-input is required, this refactoring may be provided as automated
process. In some cases, multiple used operations may be replaced by a single area-
supporting operation like SUM. In such cases, the corresponding references can
be united using area-references where appropriate. Additional references may be
removed by relocating them next to and merging with an already referenced area.

2.1.9 Conditional Complexity

Origin & Intent. Conditional Complexity was introduced by Hermans et al. in
[2012b]. The spreadsheet smell is based on a notion by Fowler regarding condi-
tional operations in object-oriented code. According to Fowler, readability of code
declines in instances where multiple nested conditional operators occur. Similarly,
multiple nested conditional operators within a spreadsheet formula are difficult to
comprehend. Therefore, Hermans et al. proposed the Conditional Complexity smell
to indicate formulas featuring an excessive number of nested conditional operators.

Target. The smell Conditional Complexity detects formula cells that contain an
excessive number of nested conditional operators. Consequently, the detection of
this smell relies solely on cells which contain formulas. Other cell types are not
taken into consideration.

Detection. For detecting the Conditional Complexity smell, Hermans et al. sug-
gest to count the number of nested conditional operators contained in a specific
formula. Based on an evaluation of the EUSES spreadsheet corpus [Fisher and
Rothermel, 2005], cells should be indicated as smelly as soon as they contain at
least 3 nested conditional operators.

Example. Occurrences of the Conditional Complexity smell are contained within
cells D2, D9, and D15 of the Employees worksheet, illustrated in Figure 2.1b. Each
of those formulas contains 3 nested conditional operations. Thus, each cell exceeds
the suggested threshold for the detection of Conditional Complexity and is therefore
marked to contain the smell.
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Cause. According to the evaluation by Hermans et al., this smell rarely occurs.
Spreadsheet users obviously have some notion that conditional operators are com-
plex. Subsequently, formulas containing conditional operators are usually handled
with care. However, especially when working under pressure, users are less reserved.
In such circumstances, users are more likely to rely on nested conditionals.

Consequences. Conditional Complexity marks formula cells within spreadsheets
that contain multiple conditional operators. However, even a single conditional op-
erator within a spreadsheet formula can be hard to comprehend for end users. This
is owned to the fact that formulas are only afforded a limited amount of screen
space to be displayed. This space usually does not suffice to show the entire condi-
tional operator. Moreover, the syntax of conditional operators within spreadsheet
environments does not emphasize the semantic function of each of its operands.
This renders them hard to comprehend. Multiple consecutive conditional operators
contained within a formula only worsen this effect.

Alleviation. One way to combat the Conditional Complexity smell is to divide the
conditional operations over multiple cells. As no additional knowledge or user-input
is required, this refactoring may be provided as automated process. Alternatively,
the SUMIF and COUNTIF operators can be used to aggregate single conditional
operators. If applicable, the LOOKUP operator can be used instead. This operator
allows to specify a search key as well as a cell range containing condition-value-pairs.
If the key matches one of the conditions within the cell range, the corresponding
value is displayed.

2.1.10 Long Calculation Chain

Origin & Intent. The spreadsheet smell Long Calculation Chain was first proposed
in [Hermans et al., 2012b]. It can be seen as the antithesis to the Multiple Oper-
ations smell. In the usual workflow of a spreadsheet, formula cells rely on results
of other formulas for their calculations. As a result, chains of dependent calcula-
tions are formed. However, in order to verify the correctness of such a chain, a
spreadsheet user needs to trace along multiple references to find the origin of the
input values. The longer such a chain grows, the harder it becomes to comprehend.
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Therefore, Hermans et al. introduced this smell to indicate formula cells which rely
on exceedingly long calculation chains.

Target. The spreadsheet smell Long Calculation Chain indicates formula cells
that rely on a large number of successive dependent calculations. Consequently,
only cells which contain formulas are relevant for the detection of this smell. Other
cell types are not taken into consideration.

Detection. For detecting the Long Calculation Chain smell, Hermans et al. sug-
gest to calculate the length of the longest path of successively referenced cells that
need to be traced when evaluating a formula’s value. Based on an evaluation of the
EUSES spreadsheet corpus [Fisher and Rothermel, 2005], cells should be indicated
as smelly as soon as the regarding metric is greater than 4.

Example. Cell C13 in the Totals worksheet, depicted in Figure 2.1c, is reliant on
a vast number of cells. One of the longest calculation chains which can be formed
is: Totals!C13→ Totals!C10→ Sales!H15→ Sales!G15→ Sales!G2→ Sales!E2. To
calculate this chain, 5 dependencies need to be dereferenced. This number exceeds
the threshold suggested by Hermans et al.. Thus, cell C13 of the worksheet Totals
is indicated as smelly.

Cause. Formulas which rely on the interim results of other formulas for their
calculations are a common practise within the spreadsheet domain. Consequently,
the formation of calculation chains is a common occurrence. When expanding the
functionality of a spreadsheet, users simply add new formulas that refer to existing
calculation results. The overall structure of the utilized calculation chains is usually
neglected during this process. Restructuring and regrouping of existing functional-
ities is not a common practice. Thus, long calculation chains are likely to occur, as
the functionality of a spreadsheet expands.

Consequences. To understand the meaning and verify the correctness of a specific
formula within a spreadsheet, a user needs to trace each reference within a given
calculation chain. The longer a calculation chain grows, the higher the number of
references and interim results it contains. Consequently, cells with long calculation
chains are hard to comprehend and maintain.

Alleviation. In order to alleviate this smell while maintaining the functionality of
the required calculations, we suggest to merge multiple steps along the calculation
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chain into a single formula which aggregates all the necessary operations. As no
additional knowledge or user-input is required, this refactoring may be provided as
automated process. However, note that this approach leads to a trade-off between
the intensity of this smell and the intensities of the Multiple Operations and Multiple
References smells. In addition, if any cell within the calculation chain is referenced
by another formula as well, this case has to be handled accordingly.

2.1.11 Duplicated Formulas

Origin & Intent. The Duplicated Formulas spreadsheet smell was introduced by
Hermans et al. in [2012b]. This spreadsheet smell is based on the Duplicated Code
smell presented by Fowler in [1999]. The related code smell indicates classes that
contain multiple occurrences of similar code snippets. Likewise, different formula
cells within a spreadsheet can contain equal formula-parts. The code smell Dupli-
cated Formulas indicates such cells within a worksheet.

Target. Duplicated Formulas points out different formula cells that feature equal
formula-parts. Consequently, the detection of Duplicated Formulas is reliant on
formula cells only. Other cell types are not taken into consideration.

Detection. For detecting the Long Duplicated Formula smell, Hermans et al.
suggest to utilize the relative R1C1 notation. References depicted in this notation
express their references to other cells relative to the cell which contains the formula.
For example, the formula MAX(A1:A3) in cell A4 would be written as MAX(R[-
3]C:R[-1]C) in this notation. Hermans et al. suggest to measure the number of cells
within a worksheet that feature formula-parts being either equal or share the same
relative R1C1 notation. Based on an evaluation of the EUSES spreadsheet corpus
[Fisher and Rothermel, 2005], cells should be indicated as smelly as soon as they
share the same formula-part with at least 6 other cells. Nevertheless, in [2012b]

they present an example whereby the Duplicated Formula smell is indicated for a
cell which shares its sub-formula with merely a single other cell, casting a doubt on
the provided threshold. Lastly, formulas which are entirely equal in relative R1C1
notation are not marked as containing the smell, as this is common practice among
spreadsheet users.
Abreu et al. proposed an adapted approach for the detection of this smell in [2014a].
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Instead of relying on the relative R1C1 notation, they directly compare occurring
formulas. As an example, two cells containing the formulas SUM(A1:A3) * 1.1 and
SUM(A1:A3) * 1.2 would have the first part duplicated and therefore be indicated
as smelly.

Example. An occurrence of the Duplicated Formulas smell is demonstrated by
cell H13 within the Sales worksheet, depicted by Figure 2.1a. The part of the
formula referencing the cell values to the left of the formula is shared with other
formulas within column H. However, the constant multiplication factor 0.9 of the
formula within H13 differs from the remaining column. Thus, the cell is indicated
to be smelly. Another example can be seen in cell H14 of the same worksheet.
The formula of this cell shares the SUMIF part with its neighbour, but expands it
by an additional multiplication. Consequently, it is pointed out as containing the
Duplicated Formulas smell.

Cause. Duplication and adaptation of formulas is common practice during the
creation of a worksheet. It is not surprising that multiple occurrences of similar or
equal formula-parts are contained in various formula cells within the same worksheet.
Evaluation by Hermans et al. indicates that a substantial amount of spreadsheet
users understand that formula duplication can lead to problems. However, they also
observe that comprehension of the issue by users does not lead to a lesser degree of
occurring duplications within the spreadsheets of those users. Moreover, some users
do not see any harm at all in duplicating formulas.

Consequences. Duplication of formula parts may lead to a number of problems.
If a large part of a given formula is duplicated from another one, it is hard to
distinguish them within the program interface. Moreover, if a formula containing
duplicated parts needs to be adapted, this adaptation has to be applied to each of the
duplicated formulas. This poses a threat to the maintainability of the spreadsheet,
as it is easy to overlook one of the duplicated formulas by mistake.

Alleviation. To remove the Duplicated Formulas smell, we suggest to extract the
duplicated section from each related formula and move it into a single, designated
formula cell. The base cells need to be updated with the reference to the new formula
cell accordingly. This procedure usually increases readability and maintainability of
a worksheet. As no additional knowledge or user-input is required, this refactoring
may be provided as automated process.
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2.1.12 Inappropriate Intimacy

Origin & Intent. Inappropriate Intimacy is an inter-worksheet smell which was
proposed by Hermans et al.. According to their definition in [2012a], the smell is
primed to detect worksheets which are too heavily reliant on the content of other
worksheets. The smell is based on the identically named code smell presented by
Fowler in [1999].

Target. Inappropriate Intimacy intents to detect worksheets that feature an
excessive number of references to different worksheets. Such references are only
contained within formula cells of a spreadsheet. As a result, the detection of the
Inappropriate Intimacy smell is solely reliant on analysis of formula cells. Other cell
types are not taken into consideration.

Detection. In order to detect an inappropriately intimate worksheet, Hermans
et al. introduced the so-called Intimacy metric. Intimacy between two spreadsheets
is measured by the number of connections between them. The function, defined by
this metric has the type W×W→ int and is defined by the formula:

Intimacy(w0, w1) ≡ |{(c1, c0) ∈ KS : c0 ∈ w0 ∧ c1 ∈ w1 ∧ w0 6= w1}|

Intimacy counts the number of pairs (c1, c0) in KS, the set containing all connections
of the spreadsheet, for which holds true that c0 is contained in worksheet w0, c1 is
contained in worksheet w1, and the two worksheets are different. Thus, it counts
the number of references the worksheet w0 contains which point to cells in the
worksheet w1. According to this definition, multiple references from one worksheet
to a specific cell of another worksheet are counted repeatedly. The overall intimacy
of a worksheet is calculated as follows:

II(w0) ≡ max{Intimacy(w0, w1) : w0, w1 ∈ S}

This metric indicates the maximum intimacy the worksheet w0 has with any other
worksheet. Hermans et al. suggest to utilize this metric to detect the Inappropriate
Intimacy smell. Based on an evaluation of the EUSES spreadsheet corpus [Fisher
and Rothermel, 2005], the threshold for the detection of this smell is 8. Thus, a
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worksheet should be highlighted as smelly as soon as it contains at least 8 references
to another worksheet.

Example. The detection of the Inappropriate Intimacy smell is based on the
maximal number of references to a different spreadsheet. Figure 2.1c depicts the
Totals worksheet of our example, which contains this smell. By analysing formulas
occurring in this worksheet, we can see that it contains 6 references to the worksheet
Employees and 9 references to the worksheet Sales. Therefore, the maximal number
of references to a different worksheet for the Totals worksheet is 9. The value exceeds
the suggested threshold for this metric. As a result, the Totals worksheet is indicated
as smelly.

Cause. According to the evaluation by Hermans et al. in [2012a], the Inappropri-
ate Intimacy smell is quite common among typical spreadsheets. They observed that
spreadsheet creators are usually not trained as programmers. Therefore, structuring
spreadsheets in a logical way poses a difficult task. Those novice users consequently
rely excessively on cross-worksheet references within their formulas. This leads to
the accumulation of the Inappropriate Intimacy smell in some cases. In particular,
Hermans et al. identified two cases which repeatedly cause the Inappropriate Inti-
macy smell. One depicts the use of a so-called auxiliary worksheet in combination
with a second one: The auxilary worksheet contains data on which the other work-
sheet relies. The second case depicts two worksheets which repeatedly reference each
other without any clear distinction of purpose between them.

Consequences. A worksheet containing the Inappropriate Intimacy smell indi-
cates the existence of a strong semantic connection to at least one other worksheet.
This split of functionality between multiple worksheets may weaken understand-
ability of the spreadsheet as a whole. Moreover, when changes are made within
the referenced worksheet, the reliant worksheet needs to be checked for correctness
as well. This requires a spreadsheet user to continuously switch between the two
worksheets.

Alleviation. Removal of the Inappropriate Intimacy smell of a worksheet re-
quires to reduce its number of references to at least one specific other worksheet.
However, this reduction usually requires a well thought-out restructuring process,
as the functionality of the spreadsheet as a whole needs to remain unaltered. The
correct refactoring strategy to apply depends on the individual situation. Wherever
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possible, neighbouring references to other worksheets should be merged using area
references. In some cases, importing more extensive parts of functionality from the
referenced worksheet may be required. In other cases, the best course of action is
to merge two worksheets.

2.1.13 Feature Envy

Origin & Intent. Feature Envy is an inter-worksheet smell proposed in [Hermans
et al., 2012a]. Hermans et al. derived it from a corresponding smell for object-
oriented code. Fowler introduced this code smell in [1999] to indicate that a specific
method is more reliant on the fields of another class than on fields of the class which
contains the method. The same principle can be applied to spreadsheet formulas.
The spreadsheet smell Feature Envy indicates formulas which are excessively reliant
on foreign worksheets.

Target. Feature Envy detects and indicates formula cells which feature an ex-
cessive number of references to foreign worksheets. Therefore, only formula cells are
analysed during the detection process of this smell. Other cell types are not taken
into consideration.

Detection. In order to detect feature envious formula cells, Hermans et al. intro-
duced the so-called Enviousness metric. Enviousness indicates how many references
to cells of other worksheets a formula contains. The metric defines a function of the
type C→ int and is defined by the formula:

FE(c0) ≡ |{(c1, c0) ∈ KS | ∃w : c0 ∈ w ∧ c1 /∈ w}|

This metric counts the number of pairs (c1, c0) in KS for which holds true that c0 is
contained in the worksheet but the cell c1 is not. Hermans et al. suggest to utilize
this metric to detect the Feature Envy smell. Based on an evaluation of the EUSES
spreadsheet corpus [Fisher and Rothermel, 2005], a formula cell should be indicated
as smelly as soon as it contains at least 3 relations to other worksheets.

Example. An example of the Feature Envy smell can be found in cell C14 of the
Totals worksheet, depicted in Figure 2.1c. By analysing the formula in cell C14, we
can see that it contains 4 distinct references to other worksheets. This value exceeds
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the threshold which is suggested for the detection of the Feature Envy smell. Thus,
cell C14 of the worksheet Totals is indicated as smelly.

Cause. The introduction of this smell is based on the same principles which apply
to the Inappropriate Intimacy smell. Hermans et al. state that Feature Envy occurs
quite often among spreadsheets [2012a]. They reason that spreadsheet creators are
usually not trained as programmers. Structuring spreadsheets in a logical way is not
a trivial problem. As a result, such users rely heavily on cross-worksheet references
within their formulas, resulting in the accumulation of the smell. Hermans et al.
pointed out two distinct cases which repeatedly lead to the introduction of Feature
Envy: One depicts the use of so-called auxiliary worksheets which contain data
in combination with other worksheets that rely on the provided data. The second
case depicts two worksheets which repeatedly reference each other without any clear
distinction from each other.

Consequences. Feature Envy implies, that a specific cell is excessively interested
in cells from another worksheet, rendering it harder to understand. This is due to the
fact, that spreadsheet users heavily rely on the highlighting feature that indicates
value ranges relevant to a formula. However, in most common spreadsheet programs
this feature does not work across worksheets.

Alleviation. To alleviate the Feature Envy smell, we suggest to move the formula
in question to the corresponding worksheet and link the result of the computation
back to the initial worksheet. By carrying out this procedure, the formula in question
is moved closer to the cell it is referring to. As a result, the comprehensibility of the
worksheets should be improved.

2.1.14 Middle Man

Origin & Intent. Middle Man was introduced as an inter-worksheet smell in [Her-
mans et al., 2012a]. Hermans et al. defined a middle man in the context of spread-
sheets as formula which only contains a single reference to another cell. Such formu-
las are used frequently as sources of information to be used in further calculations
within a local worksheet. However, worksheets which contain an excessive number
of such middleman cells are deemed smelly. The notion of a middle man was derived
from an identically named code smell introduced by Fowler [1999].
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Target. The Middle Man smell indicates worksheets that contain an excessive
number of middleman cells. A middleman cell is defined as a formula that merely
features a single reference. Thus, the detection of this smell is solely reliant on the
analysis of formula cells within a specific worksheet. Other cell types are not taken
into consideration.

Detection. In order to detect a worksheet which is smelly of the Middle Man
smell, Hermans et al. introduced a special type of formula: the middle man formula.
A middle man formula fulfils the sole purpose of fetching a value from another cell.
Cells which contain such a formula are detected by the function MMF: C → bool.
However, for the Middle Man smell to be detected for a worksheet, a calculation
chain of two consecutive passing formulas needs to occur. To that end, Hermans
et al. suggest the following metric:

MM(w) ≡ |{(c1, c0) ∈ KS : c1 ∈ w ∧MMF (c0) ∧MMF (c1)}|

This metric counts the numbers of middle man formulas in a worksheet that are
themselves used as reference by another middle man formula. Hermans et al. suggest
to utilize this metric to detect the Middle Man smell. Based on an evaluation of
the EUSES spreadsheet corpus [Fisher and Rothermel, 2005], a worksheet should be
indicated as smelly as soon as it contains at least 7 chained middle man formulas.

Example. An example related to the Middle Man smell can be found in cell B21
of the worksheet Employees (see Figure 2.1b). Analysis of the formula in cell C14
indicates, that this cell is a middle man cell. Its sole purpose is to fetch the value
contained in cell C1 of the Totals worksheet. However, the cell B21 itself is target
of a middle man cell as well: cell B15 within the worksheet Sales. Thus, a chain of
multiple middle man cells is established. This, in turn, increases the suspiciousness
of the Employees worksheet towards the Middle Man smell. However, the suggested
value of at least 7 linked middle man cells is not reached. Therefore, the worksheet
is not indicated to contain the Middle Man smell.

Cause. Middle man cells are commonly introduced to pass along values and
calculation results throughout different worksheets. The resulting values are often
used for further calculations. However, middle man cells may also be utilized to
keep an eye on specific values in different parts throughout a spreadsheet. In some
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cases, values are even passed along within the same spreadsheet for that effect. In
either case, the method of value passing can follow one of two different approaches.
Using the first approach, values are passed from the source to each middle man
individually. Using the second approach, values are passed along by formation of a
chain. Although, this approach may introduce a number of problems.

Consequences. Middle man cells are commonly used to state results of calcula-
tions within other worksheets. However, a problem arises when a worksheet contains
an excessive number of such middle man cells. In this case, the worksheet in ques-
tion may lack enough logic to justify being a separate worksheet. Such occurrences
impair general readability of a spreadsheet.

Alleviation. Which strategies should be applied to alleviate the Middle Man
smell depends on the circumstances in which the middle man cells are utilized. In
cases where values are passed along a chain of multiple middle man cells, we suggest
to adapt the corresponding formulas of each step along the chain to directly reference
the source cell instead. As no additional knowledge or user-input is required, this
refactoring may be provided as automated process. In cases where middle man cells
relay values for further processing to different worksheets it might be favourable to
simply relocate the spreadsheet logic in question to the vicinity of the data source,
thus removing the requirement for value passing altogether.

2.1.15 Shotgun Surgery

Origin & Intent. Shotgun surgery is an inter-worksheet smell presented by Hermans
et al. [2012a]. This smell is based on the corresponding code smell which indicates
that a change within one class needs to be followed up by numerous little changes
in several reliant classes. This code smell was presented by Fowler in [1999]. The
same principle can be applied to spreadsheets. Thus, the Shotgun Surgery smell
is detected when a specific cell is referenced by multiple formulas within different
worksheets.

Target. The Shotgun Surgery smell indicates worksheets which are referenced by
a large number of formulas which are contained in different worksheets. Therefore,
the only formula cells are required for the detection of this smell. Other cell types
are not taken into consideration.
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Detection. In order to detect worksheets which contain the Shotgun Surgery
smell, Hermans et al. introduce two metrics, both of the type W→ int:

ChangingFormulas(w) ≡ |{(c1, c0) ∈ KS : c1 ∈ w ∧ c0 /∈ w}|

The metric Changing Formulas counts the number of formulas which refer to a cell in
worksheet w. Based on an evaluation of the EUSES spreadsheet corpus [Fisher and
Rothermel, 2005], a worksheet should be deemed smelly as soon as it is referenced
by at least 9 changing formulas.

ChangingWorksheets(w0) ≡ |{w1 ∈ S | ∃(c1, c0) ∈ KS : c0 ∈ w1 ∧ c1 ∈ w0}|

The metric Changing Worksheets counts the number of worksheets which contain
references to any cell in the worksheet w0. Based on the evaluation of the EU-
SES spreadsheet corpus, a worksheet should be indicated as smelly as soon as it is
referenced by at least 2 other worksheets.

Example. The Employees worksheet contains the Shotgun Surgery smell. As
can be seen in Figures 2.1a and 2.1c, cells within this worksheet are referenced by
both the Sales and the Totals worksheet. Therefore, the threshold to indicate the
Shotgun Surgery smell for this worksheet is breached.

Cause. The Shotgun Surgery smell within a spreadsheet can usually be accounted
to a lack of foresight during set-up of a spreadsheet. When working with extensive
spreadsheets, references to cells of foreign worksheets are often used. Limiting the
amount of such references requires a well-considered spreadsheet structure. However,
most spreadsheets are created by novice users, rather than professional programmers.
For those users the introduction of clean and comprehensible structures is usually
a minor concern. Consequently, instances of Shotgun Surgery naturally accumulate
as the functionality of novice-spreadsheets expands.

Consequences. The inter-spreadsheet smell Shotgun Surgery indicates the oc-
currence of a cell which is referred to by many different formulas throughout other
worksheets. Naturally, if the target cell changes, many of the formulas which refer
to it need to be adapted as well. Thus, Shotgun Surgery poses an influence on
the maintainability of a spreadsheet. In addition, the introduction of faults into
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the spreadsheet is more likely, as a user might forget to adapt one of the reliant
formulas.

Alleviation. In order to cope with the Shotgun Surgery smell, we suggest to
minimize the references to cells within the worksheet in question where possible.
Another approach to alleviate this smell is to import the functionality of formulas
which rely on cells within the worksheet into the worksheet in question.

2.2 Overview and Comparison

Spreadsheet smells can be arranged into groups based on which properties of spread-
sheets they are related to. As an example, multiple smells are concerned with the
complexity and accountability of formula cells. Thus, Long Calculation Chain, Mul-
tiple Operations, Multiple References are connected to one another. When Long
Calculation Chain is lowered, others are increased and the other way around. Those
trade-offs exist in source code smells, too.

Empty Cell detection is a subset of the methodology to detect the Pattern Finder
smell. Albeit Empty Cell detection usually allows for more general thresholds as to
which part of the local neighbourhood is analysed.

Multiple occurrences of Feature Envy in relation to a specific worksheet imply
Inappropriate Intimacy, but not the other way around. Middle Man may be seen as
extreme form of Inappropriate Intimacy, of referring to a single worksheet. Middle
Man is also an extreme case of Feature Envy, as corresponding formulas only refer
to external cells. Shotgun Surgery may be caused by feature-envious or Middle Man
cells, but is not required to be so. Shotgun Surgery can also be seen as antithesis to
the Inappropriate Intimacy smell. Whereas Inappropriate Intimacy indicates that a
given worksheet is too reliant on a number of different worksheets, Shotgun Surgery
indicates that other worksheets are too reliant on a specific cell within a single
worksheet.

Every proposed inter-worksheet smell can be removed by simply placing all re-
quired spreadsheet logic into a single worksheet. However, in general a more struc-
tured design-approach improves readability and maintainability of spreadsheets. Mi-
gration of spreadsheet logic into a single worksheet in reality is only advisable up to
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a specific point. This property is characteristic for an optimization process. Nev-
ertheless, none of the proposed smells is adequate to be used as counterbalance
for such a process. This indicates a vacancy within the current spreadsheet smell
catalogue.

In general, smells which indicate similar problems or have similar detection meth-
ods tend to influence one another. In order to highlight fundamental similarities and
differences Table 2.1 provides an overview of the spreadsheet smells presented in this
paper. Within the table, the following properties are evaluated:

Name The name of the spreadsheet smell.
Target Which parts of a spreadsheet can contain the smell.
Oo-pendant Which code smell this smell is based on, if any.
Cause At which stage of the spreadsheet lifecycle the smell is usually introduced.
Consequences Which aspects of spreadsheet quality are affected by the smell.
Alleviation Whether the smell can be removed automatically, assisted or manually.
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Std. Deviation • - • • •
Empty Cell • - • • • •
Pattern Finder • • • • - • • • •
String Distance • - • • •
Ref. to Empty Cells • - • • • •
QFD • • - • • •
Multiple Operations • Long Method • • •
Multiple References • Many Parameters • • •
Cond. Complexity • - • • • •
Long Calc. Chain • - • • • •
Duplicated Formulas • Duplication • • •
Inappr. Intimacy • Inappr. Intimacy • • • •
Feature Envy • Feature Envy • • • •
Middle Man • Middle Man • • • •
Shotgun Surgery • Shotgun Surgery • • • •

Table 2.1: Comparison of Spreadsheet Smells



2.3 Utilization of Spreadsheet Smells

In the previous sections, we summarized which spreadsheet smells have been pro-
posed by the community and how those smells can be detected. However, in order
to benefit from smell detection, information about perceived smells needs to be ap-
plied in some form. Throughout the various examinations of the topic within the
scientific community, a number of different approaches have been devised to that
end, which we organize into the following 3 categories:

• Smell Indication approaches directly provide feedback about detected smells
to the user. Feedback may be provided either in-place or in form of additional
documents. Users may then manually adapt their spreadsheets based on the
additional information.

• Smell Removal approaches go a step further and attempt to process ways to
remove perceived smells from a spreadsheet. Removal of smells usually requires
some form of refactoring of the spreadsheet structure. Inferred changes which
lead to the removal of smells may either be applied automatically or presented
to the user in form of change suggestions.

• Other Approaches consult information about perceived smells and conduct fur-
ther processing to attain a goal which is relevant for the approach in question.
For example, Abreu et al. proposed to use smells as input for a fault local-
ization algorithm [2014a]. This algorithm consequently determines a set of
cells which is not necessarily smelly in itself but is likely to cause the smells
contained in the spreadsheet.

In the following section, we describe each category in more detail and state
exemplary existing approaches for each of them.

2.3.1 Smell Indication

The straightforward approach to utilize the results of smell detection is to accumu-
late and provide feedback about perceived smells within the spreadsheet. Feedback
may be provided either in-place via visual cues or in form of additional documents,
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diagrams, and charts. Most initial approaches towards the study of spreadsheet
smells used such feedback mechanisms. The focus of those early works has been to
establish and refine valid smells and detection processes. Smell utilization has been
a minor concern at that stage. However, user benefit may still be gained by those ap-
proaches. If applied, users may inspect, re-evaluate, and update their spreadsheets
based on the additional feedback-information.

Hermans et al. were among the first to venture into the scientific field of spread-
sheet smells in [2012a]. Their work revolves around detecting and visualizing inter-
worksheet smells within spreadsheets. In a previous work [Hermans et al., 2011],
they already established a process to extract data flow diagrams from spreadsheets
as a suitable option to visualize the inherent structures of spreadsheets. Such dia-
grams usually provide visual aid to comprehend data dependencies and relationships
between processes in information systems. Hermans et al. extended their computed
diagrams to also indicate detected inter-worksheet smells. Following the paradigm
established in [2011], boxes which represent worksheets are highlighted using color
if they contain a smell. The hue of the color indicates the intensity of the detected
smell. In addition, tool-tips explain which smell was detected and the concrete
location of smell-inducing cells within the respective worksheet.

Another approach by Hermans et al. relying on smell indication is presented
in [2012b]. In this work, Hermans et al. focus on the application of existing code
smell principles to formula cells within spreadsheet environments. In contrast to
their previous work [2012a], inter-worksheet dependencies are not considered. As a
consequence, the authors chose a different visusalization method for detected smells
as well. Taking cues from related work like [Abraham and Erwig, 2007], they adapted
the notion of risk maps to indicate smells in specific formula cells. A 3-tiered, color-
coded overlay over the spreadsheet is used to highlight affected cells. The more
intense the color, the more likely a cell contains a smell. In addition, comments are
added to each coloured cell, providing an explanation about the suspected smell.

Cunha et al. proposed another example which features the informative approach
to smell utilization. They introduced the tool SmellSheet Detective [2012b] [2012a].
The purpose of this tool is to detect and indicate a predefined set of smells within
provided spreadsheets. Both, spreadsheets stored within the Google Docs platform
as well as locally stored spreadsheets, may be analysed by SmellSheet Detective. The
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tool itself is based on a modular and extensible Java library, which allows for easy
incorporation of new smells into the detection process. The result of this process
may be exported in form of either csv, Excel, or LATEX tables.

Lastly, Hermans et al. [2013] presented another approach in the field of smell
detection. In this work, they attempt to automatically detect and highlight data
clones in a provided spreadsheet. Data clones are the result of copy-paste opera-
tions within a spreadsheet. Not only single cells, but also groups of cells which are
likely to be copied are indicated by their approach. Visualization is conducted based
on a combination of the techniques, conducted in the authors’ previous approaches
[2012a] [2012b]. A data flow diagram is created which indicates data clone depen-
dencies between worksheets via directed arrows. In addition, comments are added
to affected cells and areas which explain either where specific values were copied to
or where the source of specific values can be found within the spreadsheet.

2.3.2 Smell Removal

Although perceived smells do not always indicate errors, they at least point out some
flaw which usually can be improved in some form. However, many spreadsheet
smells are based on structural properties. Consequently, to remove such smells
changes to the structure of the spreadsheet are required. Such changes require
substantial effort and may lead to the introduction of new issues during the process.
Consequently, spreadsheet users often shy away from manually fixing those flaws,
even if indicated by a tool as risky. Approaches which fall into the removal category
of smell utilization attempt to support users in such circumstances by automatically
inferring the changes required to remove a specific smell. However, in some instances
more than one course of action can be established to remove a perceived smell while
none of the possibilities can be procedurally determined as preferred fix for the
circumstance. In such cases, a list of possible fixes and/or additional information
is generated and proposed to the user. The user may then choose which action to
take.

Badame and Dig proposed an approach to automated smell removal in [2012].
Their tool, dubbed REFBOOK, provides spreadsheet users with access to a suite
of automatic refactorings, each removing one commonly encountered spreadsheet
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smell. The tool is available in form of a plug-in for Microsoft Excel. However,
due to the multi-tiered architecture of their tool, it can be easily adapted for other
spreadsheet environments as well. Refactoring options are provided to the user
via a custom entry in the context menu. After selecting the target cell range of
the operation and activating the context menu, a user simply has to choose the
desired refactoring from the provided list. The plug-in handles communication of the
selected command to the back-end of the tool as well as application of the necessary
changes to the spreadsheet. The back-end process is working based on a system
of generic spreadsheet-entities. This allows the authors of the tool to expand it to
other spreadsheet programs by simply supplying a matching add-on for the desired
platform while the back-end does not need to be altered. The authors’ evaluation of
the tool indicates that users in general prefer the refactored output over the initial
spreadsheet. Usage of the REFBOOK plug-in resulted in average time-savings of
more than 50% in comparison to manual refactoring based on the same conditions.
Moreover, manual refactoring frequently introduces new faults into the spreadsheet,
whereas refactorings based on REFBOOK does not.

After their extensive work on smell detection, Hermans et al. proposed an ap-
proach which incorporates removal of detected smells as well [2014]. This approach
is based on their previous work regarding smells affecting spreadsheet formulas, pre-
sented in [2012b]. Rather than just visualizing detected smells, Hermans et al. also
attempt to infer refactoring processes to remove those smells from the spreadsheet.
Concrete refactoring suggestions are consequently added to the comments of each
affected cell. Evaluation of their approach suggested, that some detected smells can
be reliably removed using the inferred refactoring suggestions. However, spreadsheet
users might struggle to implement those refactorings themselves.

2.3.3 Other Approaches

The last category regards approaches which introduce other ideas to utilize the
results of smell detection. Smell detection itself is not the focus of such approaches.
Rather, information about detected smells is used as an interim result to base further
processing on. For example, smell information may be combined with other static
analysis techniques to improve accuracy or coverage ratings of existing spreadsheet
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fault location processes. Not much work has been published in this regard as of
yet. However, we suspect that more advances will make use of hybrid approaches
involving spreadsheet smells in the future.

Abreu et al. proposed an approach which revolves around further processing of
smell detection results [2014a]. They presume that even if only one cell is indicated
as smelly, a number of other cells are likely to contribute to the suspicious circum-
stance as well. Following this notion, a subset of cells which was identified as smelly
beforehand is provided as input for a fault localization algorithm. This algorithm
determines a set of cells which is not necessarily smelly in itself but is likely to cause
the smells contained in the spreadsheet. Abreu et al. implemented this process
in a tool dubbed FaultySheet Detective [2014b]. It represents an extension of the
SmellSheet Detective tool, proposed in [Cunha et al., 2012a]. In addition to the ex-
panded detection process, FaultySheet Detective supports a larger set of spreadsheet
smells as basis of analysis. The tool supports analysis of spreadsheets stored within
the Google Docs platform as well as locally stored spreadsheets. Suspicious cells
within the spreadsheet provided as result by the tool are indicated via background
color. The intensity of the color hue correlates with the number of faults which were
found within the respective cell. In addition, a note is added to each coloured cell
explaining which smells are detected for the cell as well as stating the result of the
fault localization algorithm for the cell. Evaluation which was based on a faulty
spreadsheet catalogue indicates that FaultySheet Detective is capable of identifying
more than 70% of faults within the tested spreadsheets.
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3. Label-Based Reasoning about Units and
Dimensions

Static checking has long since been an integral part of software technology. However,
the application of those principles to the domain of spreadsheets is a more recent
development. The notion of unit-checking of spreadsheets, in particular, was intro-
duced by Erwig and Burnett in the early 2000s. In [2002] they proposed a formal
unit system for spreadsheets which does not rely on the concept of types but rather
uses a concrete notion of units. Units thereby are inferred from information already
existing in the spreadsheets. Based on this unit information, the system allows to
reason about and check the integrity of formulas as soon as they are typed in.

To provide an example, suppose the user has created the spreadsheet depicted in
Figure 3.1. The labels placed by the user imply that column B is related to Espresso.
Based on the formulas, we can deduce that the total in Cell B5 is also related to
the unit Espresso. In regard to the provided formula, this is a valid combination of
units. Cell D3 adds the units Espresso and Decaf. This may seem illegal initially.
However, the added cells, B3 and C3, also refer to a second unit: July. Thus, D3
combines the units (July, Espresso) and (July, Decaf). The result can be reduced
to the unit (July, Coffee), which is a legal combination. However, suppose the user
changes the formula in D3 to now calculate B2 + C3 instead. The formula would
now compute the sum of (July, Espresso) and (August, Decaf). In this instance,
both unit-parts mismatch: Espresso vs. Decaf and July vs. August. Consequently,
a unit-checking system would indicate an error.

Current approaches towards unit-checking of spreadsheets still follow the basic
principle presented in the example above. Nevertheless, various authors proposed
a number of refinements and variations based on this principle. In the following
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(a) Value view.

(b) Formula view.

Figure 3.1: Example spreadsheet depicting coffee consumption.

subsections, we state an overview of the most important approaches. We proceed
by highlighting some of the basic principles that most of these approaches rely on.
Lastly, we point out some derivative concepts which were based on those ideas.

3.1 History

Unit-checking within spreadsheets is based on the principle of dimensional analysis
within programming languages. The method was first adapted to the domain of
spreadsheets in the early 2000s. At that time, type-checking was already an es-
tablished static code analysis practice within the scientific community. However,
application of static analysis to the domain of spreadsheets was a novel approach.
Two reasons can be stated for this circumstance: Firstly, the procedures and re-
sults of static type checking approaches are hard to grasp for users. Indeed, users
of spreadsheet programs usually are not trained programmers. Consequently, those
users are often thought to be unable or unwilling to handle the extra effort associated
with static checking approaches. Secondly, spreadsheet programs in general were not
taken seriously within the programming languages community at the time. Never-
theless, the number of end-user programmers relying on spreadsheet programs kept
on increasing. In addition, researchers proposed extensive evidence indicating that
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20% to 40% of the spreadsheets produced and maintained by novice programmers
contain errors, leading to significant economical losses.

Erwig and Burnett recognized this need for improvement. In 2002, they pro-
posed a unit system for spreadsheet programs based on general research into units
and dimensions [2002]. Following their definitions, the notion of a “unit” should
be application dependent, rather than adapting the meaning of units to represent
scales of measurement for specific dimensions. Their proposed system attempts to
detect illegal combinations of units within spreadsheet calculations. To that end,
the system should support manual annotation of cells with explicit unit informa-
tion. However, the unit system should also infer as much information as possible
without requiring additional user interaction. This requirement is indicative of a
“gentle slope” language feature, as described in [Myers et al., 1992]. Throughout
their work, Erwig and Burnett formulate a formal spreadsheet calculus and define
their notion of headers and units within a spreadsheet environment. Based on these
definitions, they propose the first formal set of unit-inference rules for spreadsheets
in scientific literature. In addition, they state starting points for header inference as
well. In [2002], Erwig and Burnett expand their work and describe a visual system
which supports the formal definitions stated in [Erwig and Burnett, 2002]. The pro-
posed system provides two main features: Firstly, it allows for visual explanation of
unit-inference mechanics to end-users. Secondly, it aids these users in customizing
the system’s inference rules.

Inspired by the work of Erwig and Burnett, Ahmed et al. proposed a rule-set for
unit-checking of spreadsheets of their own [2003]. The unit inference rules proposed
by Ahmed et al. are simpler than the rule-set proposed by Erwig and Burnett.
However, Ahmed et al.’s system adds the notion of semantic relationships between
headers to the process and supports a wider range of operators. According to their
definition, two headers may either entertain an is-a relationship, signalling some kind
of generalization between the headers, or a has-a relationship, indicating that one
header describes a property or item of the related header. Ahmed et al. implemented
their unit-checker based on a common programming environment. The resulted
tool allows for unit-checking of spreadsheets within Microsoft Excel. However, as
no header-inference algorithm was implemented, each cell needs to be manually
annotated with its unit information. Evaluation conducted by the authors shows
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that the tool is able to detect errors in many cases. Coverage and false-positive rates
are unknown.

Antoniu et al. proposed a tool for validating dimension correctness of spread-
sheets dubbed XeLda [2004]. The tool supports analysis of spreadsheets based on
Excel. Unlike previous approaches, Antoniu et al. regard units as dimensions asso-
ciated with a numeric value. Based on this definition, a unit consists of a possibly
empty list of unit-exponent pairs (e.g. m1s−1). Unit inference follows the mathe-
matical principle of unit combination based on employed operators. For example,
a formula calculating the multiplication of the units m1s−1 and s1 results in the
unit m1. Detected unit conflicts may be resolved via user-defined unit coercions.
Initial unit information is required for the inference process. This information can
be supplied to the system via manual annotation of numeric input and formula cells.
The unit inference process is able to discern two distinct error types: Match errors
indicate that a derived unit deviates from a formula’s annotated expectation. Con-
sistency errors indicate that a calculation relies on inconsistent units. Erroneous
cells are highlighted via background color and a descriptive comment. In addition,
the tool displays arrows pointing from the cells which contribute to the error via
references to the erroneous cell itself. Initial testing of XeLda by Antoniu et al. in-
dicates that the tool is able to accurately detect dimension errors within annotated
spreadsheets.

In 2004, Abraham end Erwig proposed their approach to conquer the yet un-
solved problem of automated header inference [2004]. Throughout their work, they
propose a collection of algorithms to infer header information from a spreadsheet.
Each of these algorithms is primed to analyse a different structural aspect, commonly
found in spreadsheets. In addition, they provide a header inference framework which
allows to employ a combination of the mentioned algorithms. Using this framework,
Abraham and Erwig proceed by evaluating and optimizing different weighted com-
binations of header detection algorithms. In later work, [2007] Abraham and Erwig
utilize their optimized header inference process by combining it with previous work
into unit systems for spreadsheets [Erwig and Burnett, 2002]. The resulting system
was implemented into a tool dubbed UCheck. The tool is provided as an add-in
for Excel which communicates with a header/unit inference engine implemented in
Haskell. Once the system is put into action, it automatically infers headers and
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assigns and infers units. The tool indicates cells which contain detected unit errors
via a red background color. Evaluation by Abraham and Erwig indicates that the
header inference process rarely produces incorrect header assignments. Moreover,
even in cases where incorrect header inference occurs, the follow-up unit inference
does not report any illegal errors.

Another approach for unit checking of spreadsheets was proposed by Coblenz
et al. in [2005]. With SLATE, they introduced a spreadsheet system of their own.
SLATE accurately handles unit dimensions and in addition adopts the more ab-
stract notion of units popularized by Erwig and Burnett [2002] in form of labels.
Using this system, value cells can be annotated both with units like $ and kg as
well as labels like “apples” and “oranges”. A cell value depicting the per kg price
of oranges may look like this: $0.96/kg (oranges). Dimensions as well as labels
need to be entered manually for each cell. To facilitate unit- and label-checking,
each spreadsheet requires a unit context which defines usable base units and a label
context which defines the hierarchical relationship between different supported la-
bels. Dimension inference within the system follows the mathematical model. Label
and unit inference follow a similar approach to the one presented in [Erwig and
Burnett, 2002]. The result of these inference processes is supplied to the labels of
formula cells. Explicit error-checking capabilities are missing in the spreadsheet sys-
tem. Nevertheless, users may detect errors themselves by analysing the unit- and
dimension-information contained in the updated formula labels. The effectiveness of
SLATE in comparison to other spreadsheet systems remains unclear, as no relevant
evaluation has been conducted.

In 2008, Chambers and Erwig proposed an approach to automatically detect
dimension errors in spreadsheets [Chambers and Erwig, 2008]. Their definition
of dimensions is similar to the one presented in [2004]. Chambers and Erwig’s
dimension analysis approach revolves around so-called “base dimensions”. Each
base dimension is related to a base unit of measurement (e.g. length or mass).
Base dimensions may also occur with an applied exponent and be combined with
other base dimensions. This allows for the definition of complex and composite
dimensions. For example, velocity can be defined as {length,time−1}. A set of 9
valid base units is available. Each of these base units features a specific default unit
(e.g. meter(m) for the base unit length). Conversion factors allow for automatic
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coercions to other units of measurement for the same base unit. The unit-checking
process follows a specific sequence: First, header inference based on a previously
presented approach [Abraham and Erwig, 2007] generates header information for
further processing. In a second step, dimensions are derived by analysis of the labels
contained in identified header cells. Lastly, the resulting dimension information is
propagated and dimension inference applied to value- and formula cells. In cases
where dimension information is missing due to failed label analysis, the context
provided by formulas can be used as basis to infer the missing dimensions. The
system is able to discern two types of errors: Colliding dimensions indicate that
dimensions inferred for formulas do not match the expected dimension for this cell.
Invalid dimensions indicate that inferred dimensions violate pre-set constrains (e.g.
inference of the dimension kg3). Cells that contain detected errors are highlighted
via application of a predefined background colour and a descriptive note. Chambers
and Erwig [2009] refined their approach and implemented a the resulting system into
an extension for Microsoft Excel. The paper also features an in-depth evaluation
of the tool based on the EUSES spreadsheet corpus [Fisher and Rothermel, 2005].
According to this evaluation, label analysis and dimension inference worked reliably.
Header inference was still the most problematic step, as labelling practices within
spreadsheets vary. Nevertheless, dimension errors were found in almost half of the
spreadsheets selected for evaluation.

Lastly, in 2010, Chambers and Erwig proceeded in combining purely label-based
and dimension-based reasoning into one system [Chambers and Erwig, 2010]. For a
given worksheet, the system attempts to identify a vertical and horizontal label axis.
Label interpretation then allows to discern which of those axes can be utilized for
dimension interference. In cases where an axis features no dimension information,
the system falls back to the label-based analysis approach described in [Abraham and
Erwig, 2007]. For cases where both label- and dimension-information is available,
Chambers and Erwig propose a variety of different approaches to combine both
analysis processes. However, they reason that the best approach is to determine both
the labels and dimensions of an axis wherever possible. This approach guarantees to
utilize all structural information that label checking can provide without loosing the
merit of dimension checking. Indeed, evaluation of various analysis combinations by
the authors indicates that the fully integrated approach of combining both systems
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yields the highest number of detected errors. However, the integrated system also
features a higher number of false positives than each singular analysis approach.
In conclusion, Chambers and Erwig reason that, despite the drawbacks, a system
integrating label- and dimension-analysis is able to detect more errors and thus
proves to be more useful to users.

3.2 Common Concepts

Many of the above mentioned approaches are quite similar to each other or can
even be regarded as derived work. Consequently, many of those approaches share
a number of common base concepts and methodologies. These common concepts
include:

• Identification of cell headers.

• Assignation, combination, and propagation of units.

• Inference, combination, and propagation of dimensions.

• User input and report of detected unit- and dimension errors.

In the following subsections, we present each of these concepts in greater detail. In
addition, we explain the basic idea and result of the respective steps in the common
work-flow.

To explain how these concepts work in practice, we provide an example in Fig-
ure 3.2. This example depicts a spreadsheet which calculates the price of a specific
amount of different brands of coffee, based on the price and weight of their respective
custom packaging. Both, value and formula views of the example spreadsheet, are
available in Subfigures 3.2a and 3.2b. The labels and dimensions resulting of the
respective inference processes for formulas are depicted in Subfigures 3.2c and 3.2d.

3.2.1 Header Inference

Header inference denotes the process of identifying a set of headers for each cell
within a spreadsheet. A header within a unit-checking system is a cell which provides
a unit to its dependent cells. Indeed, a cell can be a header for an arbitrary number of
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(a) Value view.

(b) Formula view.

(c) Labels, after unit inference.

(d) Dimensions, after dimension inference.

Figure 3.2: An example worksheet, demonstrating common concepts used
within unit-checking approaches. The table depicts a comparison
of different coffee brands. A blue border indicates cells inferred
as header cells. A yellow background indicates cells containing
errors.
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cells and can itself have an arbitrary number of headers. Chambers and Erwig [2010]

provide a formal definition for the binary relation produced by header inference
following the form: H ⊆ A×A. Based on this definition, (a, a′) ∈ H indicates that
a′ is a header of the cell a.

Within the example depicted in Figure 3.2, header cells are indicated via a blue
border. Cells B1 to F1 are identified as headers for their respective columns. Cells
A2 to A4 are identified as headers for their respective rows. A1 is identified as
header for cells A2 to A4, forming a dependent header relationship.

While Erwig and Burnett already realized the necessity of header inference in
their initial approach [Erwig and Burnett, 2002], in-depth consideration of concrete
header inference mechanics was omitted at the time. Nevertheless, they did sup-
ply some likely starting points for such processes: Predefined unit information (e.g.
the fact that the label June denotes a month), Formatting of specific parts of a
spreadsheet, and Spatial & content analysis of the supplied spreadsheet. Moreover,
in a follow-up work [Abraham and Erwig, 2004], they addressed this problem by
presenting a framework for implementation and evaluation of header inference al-
gorithms as well as a collection of spatial-analysis algorithms for header inference.
Those algorithms numbered: Fence Identification, Content-Based Cell Classifica-
tion, Region-Based Cell Classification, and Footer-to-Core Expansion. Each of these
algorithms identifies a specific set of cells within the spreadsheet with a specific cer-
tainty to be headers for specific other cells. Evaluation of the test system indicates
that a weighted combination of each of the presented algorithms yields the optimal
results for the test data. The proposed techniques were further optimized and re-
sulted in the implementation of the UCheck tool, described in [Abraham and Erwig,
2007]. Since then, the proposed process for header inference can be regarded as the
de-facto standard and was used repeatedly [Chambers and Erwig, 2008] [Chambers
and Erwig, 2009] [Chambers and Erwig, 2010].

Other approaches regarding unit-checking of spreadsheets proposed in [Ahmad
et al., 2003], [Antoniu et al., 2004], and [Coblenz et al., 2005] each omitted in-depth
investigation of header inference processes. Instead, those approaches provided user
interfaces which allowed for cells to be manually annotated with units.
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3.2.2 Label-based Unit Inference

The concept of label-based unit inference was introduced by Erwig and Burnett in
[2002]. According to their concept, each value within a spreadsheet defines a unit.
However, only a subset of these units provides meaningful header information for
other cells. This relationship is established either by use of automatic header infer-
ence, or by manual annotation by users. Header cells define so-called “simple units”
(e.g. Coffee, Espresso, and July). Simple units may be headers of other simple units
(e.g. Coffee[Espresso]). Such relations construct a hierarchy of dependent units.
Simple units may be combined into complex units in two distinct ways: Firstly, a
cell can depend on more than one header. The unit of such a cell is a combination
of the units of each related header cell. Secondly, formula operators combine units
of referenced cells. Examples for complex units are Coffee[Espresso] & July and
Coffee[Espresso] | Coffee[Decoffeinated]. During unit inference, formula operators
combine units of referenced operand cells. If the operation is inapplicable due to
mismatching operand-units, this circumstance is detected as unit error. Likewise, if
the unit resulting from the combination of multiple referenced units is not sound,
this circumstance is detected as unit error. While most unit inference system follow
this basic concept, the exact unit-inference rules and soundness-criteria for resulting
units vary.

An example of a unit-error is contained within the spreadsheet in Figure 3.2. Cell
F2 contains the formula D2*E3. Cell D2 has the unit Price per weight & Jacobs
whereas E3 has the unit Standard weight & HAG. Both cells exclusively contain
unit factors which are different from the factors of the other cell. Consequently,
unification of the units is impossible. This would be detected as an error within
unit-checking processes. In comparison, Cell F3 contains the formula D3*E3. D2
has the unit Price per weight & HAG. E2 has the unit Standard weight & HAG.
Both referenced cells feature the unit factor HAG. Consequently, these units can be
unified successfully, retaining the HAG portion. No error would be reported for this
formula.
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3.2.3 Dimension Inference

Dimension inference is a more elaborate technique of label-based unit inference.
This technique relies on the more classical interpretation of the term unit in regard
to a value: a unit of measurement in a specific dimension. Antoniu et al. [Antoniu
et al., 2004] and Chambers and Erwig [2008] both presented similar approaches
for dimension-checking of spreadsheets. Both approaches depict the use of a base
unit expanded by an exponent. Antoniu et al. [2004] allow arbitrary names for
base units while Chambers and Erwig [2008] only allow a set of 9 predefined base
units to be used. Both allow the construction of more complex units combining
base units (e.g. m1s−1). Depending on the approach, dimension information of
value- and formula cells is either assigned by users manually, or header inference
is used to derive dimensions automatically. During dimension inference, formulas
are processed bottom-up, combining units of referenced cells to form more complex
units. The resulting units are then checked against the expected dimensions for
each formulas’ values. If the inferred unit does not match the expectation provided
by annotation or header analysis, an error is reported. In addition, Chambers and
Erwig suggest to sanity-check inferred units: Each inferred unit is checked against a
list of known, meaningful units in order to detect outliers which are mathematically
correct but do not occur in a scientific context (e.g. kg3).

An example of a dimension-error is contained within the spreadsheet depicted
in Figure 3.2. Cell D4 contains the formula B4+C4. Dimension inference identifies
$1 and kg1 for the dimensions of the referenced cells. However, addition of different
base units is prohibited. Consequently, Cell D4 is indicated to contain a dimension
error. Note that conventional label-based unit-checking would not be able to identify
this error. Both referenced cells contain the label “Illy”. Thus, unification of those
cells based on conventional unit inference results in a valid unit.

3.2.4 User Interaction

Unit-checking systems operate by processing provided unit information and inform-
ing users about detected errors. Thus, such systems need to define interfaces which
allow a user to provide unit information to the system, and interfaces which allow
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the system to provide its results to the user. In the following subsection, we provide
an overview of common user-interface concepts employed in various unit-checking
approaches.

In order to process and validate a spreadsheet, unit-checking systems need to
know the units of value cells and expected units of formula cells. Over time, different
methods have been established to provide this information. In their initial proposal,
Erwig and Burnett simply assumed for this information to be available [2002]. The
first systems to actually implement unit-checking required users to annotate their
spreadsheets manually. The tools presented in [Ahmad et al., 2003] and [Antoniu
et al., 2004] both provide a simple user interface which allows to manually enter
cell range-unit pairs. The spreadsheet environment SLATE [Coblenz et al., 2005]

allows for annotation of values directly within their respective cells. More recent
approaches by Chambers and Erwig [2008] [2009] [2010] utilize header inference
methods introduced in [Abraham and Erwig, 2004] and [Abraham and Erwig, 2007].
Consequently, no explicit user input is required beside the definition of row and
column headers.

Users need to be adequately informed about the unit-errors detected by unit-
checking processes in order to react appropriately. A combination of highlighting
background-colors and explaining notes established itself as de-facto standard within
the community for that purpose. Background-colors indicate the presence of a de-
tected error within a cell. Usually, different color-hues are used to represent the
severity or type of detected errors. In addition, most approaches add a note to each
indicated cell, explaining the detected error in greater detail. Ahmed et al [2003],
Antoniu et al. [2004], Abraham and Erwig [2007], and Chambers and Erwig [2008]
[2009] [2010] all employ some variation of this combination, whereas Abraham et al.
[2004] employ background-colors only. The use of arrows is another, commonly em-
ployed concept. Antoniu et al. [2004] display arrows to indicate the connection
between a faulty formula cell and cells which are referenced within the formula.
Abraham and Erwig employ arrows to visualize header dependencies within their
systems [2004] [2007]. Lastly, the spreadsheet system proposed by Coblenz et al.
simply annotates formula cells with the result of its unit inference process. Users
may validate their formulas manually by checking these annotations.
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3.3 Derived Concepts

Unit- and dimension-checking enables users to detect and correct semantic errors
within formulas. The basic concepts employed by these processes can be used within
more specific or generally different approaches to improve spreadsheet quality. In-
deed, various approaches were proposed which further expand on those notions. In
the following section, we exemplary present a few of them.

Type systems expand the notion of units and dimensions employed by the previ-
ously presented static checking approaches. In particular, they define type expecta-
tions for the parameters and the result types of formula cells. Abraham and Erwig
proposed their approach for a spreadsheet type system in [Abraham and Erwig,
2006b]. Following their approach, they specify the types of a formula as so-called
“function types”. Function types limit allowed argument types of formulas by defin-
ing the types that are expected for a formula’s referenced cells. The “result type”
of a formula is defined by the result type of the outermost operation of the formula.
Based on these prerequisites, a “cell type” can be defined as a pair containing the
formula’s result type and possible type conflicts based on the formula’s references.
Lastly, cell types can be used to define “spreadsheet types” which can be utilized to
calculate the type correctness for different parts of a spreadsheet. Based on these
definitions, Abraham and Erwig proposed a type inference algorithm to detect type
errors within a spreadsheet. In addition, the same type inference process can be
expanded to export templates and models of an existing spreadsheet.

Content- and structure-information of a spreadsheet can be used to infer its
so-called Spreadsheet Templates. Template inference processes the structure and
content information of an existing worksheet in order to determine which content
type is applicable for each row and column of the worksheet. Generated worksheet
templates can be used to guarantee that columns and rows of the worksheet may
only be expanded by new cells which pass the determined criteria. Thus, range,
reference, and type errors can be prevented automatically. Abraham and Erwig
describe a spreadsheet template system as well as a matching template inference
algorithm in [Abraham and Erwig, 2006a].
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The combination of spreadsheet templates with the notion of types allows to
specify so-called “Spreadsheet Models”. A model is an abstract definition of each
permitted column and row, defining worksheet-templates of a spreadsheet. Thus,
a model can be determined by extracting the template of each worksheet of the
spreadsheet in question. Likewise, a spreadsheet model can be used to determine a
set of templates. Thus, a concrete spreadsheet containing data can be considered
as an instance of the abstract model its based on. By enforcing the definitions
of a spreadsheet model, only cell-updates may be allowed which never produce any
reference- or type errors. Abraham and Erwig demonstrate how to create and utilize
spreadsheet models based on their previous work in [Abraham and Erwig, 2006b]
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4. Conclusions

The main purpose of this study was to provide an in-depth review of the state of the
art of specific static analysis techniques for spreadsheet environments. In specific, we
presented and elaborated on an extensive catalogue of spreadsheet smells introduced
by the scientific community. In addition, we outlined the history and basic concepts
of label-based unit- and dimension-checking approaches for spreadsheets.

We conclude that both are adequate techniques to improve overall spreadsheet
quality. Spreadsheet smells provide meaningful feedback about specific quality prop-
erties. In most approaches, cells which contribute to detected smells are indicated
visually and decorated with a note which further explains the issue. Either manual
or automatic refactoring can then be applied to remove those issues, raising spread-
sheet quality as a consequence. Coincidentally, provided labels may convey a general
understanding of quality aspects to users who manually refactor the indicated is-
sues. This expanded comprehension of quality properties may aid spreadsheet users
further along during the maintenance or creation of further spreadsheets. Unit-
and dimension-checking of spreadsheets provides a more tangible improvement to
spreadsheet quality. Either manual annotation or header inference provides unit-
information for value and formula cells. Based on that information, approaches
based on these techniques indicate cells whose formulas compute erroneous or un-
expected units. Consequently, formulas are detected which may be syntactically
correct, but infringe on the semantic intention of the spreadsheet. In addition,
users may adapt a more considerate approach to spreadsheet structure, as they are
required to either provide meaningful information to allow for automated header
inference or even manually annotate value cells with expected units.

Both approaches also suffer from some drawbacks. Spreadsheet smells indicate
potential quality impairments rather than specific errors. However, numeric thresh-

59



olds for metric values at which cells are indicated as smelly are statically defined
and ignore the current context of the spreadsheet in question. Moreover, spreadsheet
smells and the quality aspects they represent do not exist in a vacuum. Actions to
improve one quality aspect usually have a negative effect on another quality aspect
as well. Lastly, removal of spreadsheet smells frequently requires a considerable
amount of re-structuring within the spreadsheet. Manual refactoring therefore is of-
ten unattractive for end-users, or even leads to the introduction of new errors to the
spreadsheet. In regard to unit- and dimension-checking, the main drawback is the
initial information requirement. Users either need to manually annotate cells with
unit or dimension-information, or at least define row- and column-headers viable
for automated header inference. Furthermore, more elaborate techniques which
utilize both unit- and dimension-information to deduce errors also feature higher
false-positive detection rates.

As mentioned in Subsection 2.2, inter-worksheet smells are missing a counter-
balance for optimization. This is a novel finding and should be further explored. In
specific, one or more concrete metrics indicating at which point spreadsheet logic
should be transferred to a new worksheet are of interest.

Future work into the field of static spreadsheet analysis should focus on expand-
ing the understanding about characteristics of and interactions between spreadsheet
smells. New smells should be introduced, either based on further existing code smells
or using spreadsheet-specific quality measurements. Further inter-worksheet smells
to counteract the existing set would be of particular interest. Moreover, improved
tool support to refactor the quality issues identified by smells would be favourable.
As for unit- and dimension-checking, future work should abandon the requirement
for manual annotation in general. Instead, the existing methods for header infer-
ence should be refined and expanded on, as even recent approaches identify this
step as weak spot. In addition, processes to automatically recognize or prohibit the
detection of false positives could greatly improve the results of existing approaches.
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