Fault Localization for Spreadsheets

Elisabeth Getzner

November 13, 2014

- Introduction
- Trace-based Approaches
- Other Approaches
- Comparison

2 / 29

Introduction

Fault Localization in Spreadsheets

Aids the user in finding the location of the fault (faulty cell) provided the spreadsheet shows erroneous behavior.

Goals

- Reduce the search space (less cells)
- Prioritize the search (which cell should we inspect first)

Approaches

Trace- and Model-based approaches, Combination approaches

Fault Localization in Spreadsheets

Trace-based Approaches

- Wysiwyt
 - Test Count
 - Blocking Technique
 - Nearest Consumer
- Sfl
- MostInfluential

Model-based Approaches

- ConBug
- Exquisite

Combined Approaches

- SENDYS
- WYSIWYT and UCHECK

Fault Localization for Spreadsheets

5 / 29

Comparison Criteria

- User Input
 - Complexity and size
- Algorithm
 - Underlying concepts
 - Runtime and fault complexity
- Output
 - Type and form
- Evaluation
 - Metric used to measure the success

Running Example

	Α	В	С	D	E
1		Hours	Salary	Bonus	Sum
2	Jones	17	272	26	298
3	Smith	13	208	0	208
4	Rogers	20	320	40	360
5	Total		800	66	866

Figure 1: Value view with fault in D2.

	Α	В	С	D	E
1		Hours	Salary	Bonus	Sum
2	Jones	17	=B2*16	=IF(B2>15, C3 /8,0)	=SUM(C2:D2)
3	Smith	13	=B3*16	=IF(B3>15, C3 /8,0)	=SUM(C3:D3)
4	Rogers	20	=B4*16	=IF(B4>15, C4 /8,0)	=SUM(C4:D4)
5	Total		=SUM(C2:C4)	=SUM(D2:D4)	=SUM(E2:E4)

Figure 2: Formula view, with D2 referencing C3 instead of C2.

Trace-based Approaches

User Input for trace-based approaches

User Input: Testing Decisions (TD = $TD^+ \cup TD^-$)

- (✓/✗) for each cell, judging values
- Advanced: assertions, multiple input values

Algorithm Input: Test Cases (TC)

- Slice or CONE for each TD
- ullet $TD^+
 ightarrow TC_P$, $TD^-
 ightarrow TC_F$
- Reduce search space to relevant cells
- Dynamic vs. static

Issues:

- oracle mistakes
- coincidental correctness

User Input and Test Cases

	Α	В	С	D	Е
1		Hours	Salary	Bonus	Sum
2	Jones	17	///272	26	298
3	Smith	13	208	0	⊿ /208
4	Rogers	20	320	40	360
5	Total		✓ 800	66	X 866

Figure 3: Test case visualization, with testing decisions marked with ✓ /✗.

Blocking

- Based on Dicing
 - Exclude any cell that participates in passing test case
- "Very Low" fault likelihood for those cells
- Relies on correct testing decisions (coincidental correctness or oracle mistakes)
- Count only "reachable" test cases:

$$\mathsf{FL}_{\mathsf{BL}}(c) = \mathsf{max}(1 \; , \; 2 \cdot | \mathsf{TC}_{\mathsf{F} \; ,\mathsf{U}}(c)| - | \mathsf{TC}_{\mathsf{P} \; ,\mathsf{U}}(c)|),$$

with $TC_{F,U}(c)$ the number of unblocked failed test cases

Blocking Example

	Α	В	С	D	Е
1		Hours	Salary	Bonus	Sum
2	Jones	17	272	26	298
3	Smith	13	208	0	208
4	Rogers	20	320	40	360
5	Total		800	66	X 866

Figure 4: Failing test case originating from E5

Blocking Example (2)

	Α	В	С	D	Е
1		Hours	Salary	Bonus	Sum
2	Jones	17	///272	26	298
3	Smith	13	208	0	208
4	Rogers	20	320	40	360
5	Total		✓ 800	66	X 866

Figure 5: Passing test case originating from C5

Blocking Example (3)

	А	В	С	D	Е
1		Hours	Salary	Bonus	Sum
2	Jones	17	///272	26	298
3	Smith	13	208	0	 208
4	Rogers	20	320	40	360
5	Total		✓ 800	66	X 866

Figure 6: Passing test case originating from E3

Output

- Likelihood value for all relevant cells
 - Low likelihoods with few test cases
- Tie: multiple cells with the same likelihood
- Ranking

	Α	В	С	D	Е
1		Hours	Salary	Bonus	Sum
2	Jones	17	1	2	2
3	Smith	13	0.1	0.1	0.1
4	Rogers	20	1	2	2
5	Total		0	0	2

Figure 7: Heat Map output for Blocking

Metrics

WYSIWYT

measures visual effectiveness: $eff_{FL} = avg_{FL}(C_F) - avg_{FL}(C_{NF})$

- no info on position of fault (first ranked)
- too much weight given to lower ranked non-faulty cells

SFL

absolute and relative rank (= absolute rank / |C|) of the faulty cell

- single faults only!
- critical tie (contains faulty cell) needs to be considered

Which cells are in C

- all formula cells,
- all cells *FL* > 0,
- cells ranked higher than the faulty cell

Multiple Fault Complexity

- limited trace-based support
- not supported by output

Figure 8: Single fault

Figure 10: Dependent double fault

Figure 9: Independent double fault

Figure 11: Nested double fault

Independent Faults - Example

	Α	В	С	D		E
1		Hours	Salary	Bonus		Sum
2	Jones	17	=B2*16	=IF(B2>15, C3 /	8,0)	=SUM(C2:D2)
3	Smith	13	=B3*16	=IF(B3>15, C4/	8,0)	=SUM(C3:D3)
4	Rogers	20	=B4*16	=IF(B4>15, C5/	8,0)	=SUM(C4:D4)
5	Total		=SUM(C2:C4)	=SUM(D2:	D4)	=SUM(E2:E4)

Figure 12: Formula view, multiple faults D2:D4 highlighted

Figure 13: Dependency graph for the multiple fault example

	Α	В	С	D	Е
1		Hours	Salary	Bonus	Sum
2	Jones	17	272	26	X 298
3	Smith	13	208	0	208
4	Rogers	20	320	100	X 420
5	Total		800	126	926

Figure 14: Testing decisions for the multiple fault example

Figure 15: Dependency graph indicating test case creation

	Α	В	С	D	Е
1		Hours	Salary	Bonus	Sum
2	Jones	17	272	26	X 298
3	Smith	13	208	0	208
4	Rogers	20	320	100	X 420
5	Total		800	126	926

Figure 16: Testing decisions for the multiple fault example - independent faults

- Cells that participate in most failing test cases rank highest
 - Non-faulty cells might receive higher rank than faulty
- Decrease in confidence
- Could be detected if intersection is empty

Strengths and Weaknesses

Strengths

- (+) Only (✓/X) required as input
- (+) Low runtime requirements
- (+) Intuitive output

Weaknesses

- (-) Lacking support for multiple faults
- (-) Often dependent on many test cases
- (-) Little reduction in search space (only prioritization)

Other Approaches

Model-based Debugging

- Model (spreadsheet) and description (user input) allows information on conflicting cells.
- Solvers are used to check consistency higher runtime
- Input
 - Test cases with expected output values (X not enough!)
 - Assumes perfect oracle
 - Additional assertions possible
- Output
 - Diagnosis: set of one or more cells that explain the fault (multiple faults)
 - Set of diagnoses difficult to prioritize
 - No ranking no prioritization
 - Reduction of the search space by excluding cells

SENDYS

Spectrum ENhanced Dynamic Slicing

- Combines SFL with lightweight model-based approach (CONES = conflicts, hitting sets = diagnoses)
- Allows combination of
 - Ranking/likelihoods for single cells (trace-based) with
 - Diagnoses of potentially multiple cardinality (model-based)
- More diagnoses than model-based (no solver calls no explanations)
- Similar issues with multiple faults as trace-based approaches

Comparison

Comparison

Table 1:Comparison of the discussed approaches

Approach:	Trace-based	Model-based	Sendys
User Input			
Testing decisions	value (✓ /✗)	expected value	value (✔/✗)
Required complexity	low	high	low
Optional complexity	high	very high	low
Algorithm			
Based on	heuristics	explanations	heuristics, diagnoses
Fault complexity	mostly single	multiple	multiple
Runtime complexity	low	high	low-moderate
Output			
Type	ranking	diagnoses	ranking, diagnoses

Thank You Any Questions?