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Abstract

Detecting and even locating faults in systems is an im-
portant but also very much resource consuming task,
which is especially true for finding and fixing bugs
in programs. In literature someone finds different ap-
proaches for supporting the fault localization task for
programs including statistical methods like spectrum-
based fault localization, methods based on control and
data dependences like slicing, and even model-based di-
agnosis relying on a logical or constraint representation
of a program for computing diagnosis candidates. One
issue that hampers the use of model-based diagnosis for
debugging is its computational requirements especially
when relying on a more or less one-to-one representa-
tion of the underlying source code. In order to decrease
computational requirements abstract models have to be
used. In this paper, we discuss the use of deviation mod-
els and provide a framework for comparing such models
making use of an abstraction function. First experimen-
tal results indicate that some abstract models behave
similar to concrete models for diagnosis but come with
a much lower computational footprint enabling their use
in practice even for larger programs.

Introduction
When a program exhibits an unexpected behavior, the iden-
tification of its corresponding root cause can be a very labo-
rious and time consuming task. This is due to several reasons
including: (1) The interactions and data communicated with
the program leading to the unexpected also contains a lot of
information that is not needed for bug localization. (2) The
chain of computations from a root cause to its effect, i.e.,
the failure, might be very long. (3) And it might also be very
difficult to state an expected value. The latter occurs for ex-
ample in cases of complicated computations where we know
that the value should be within a range but nothing more.

Let us illustrate this third case using an example from
the Spreadsheet domain taken from (Hofer et al. 2015). The
spreadsheet given in Figure 1 computes the cardiac index of
a person using the diastolic and systolic volume, the heart
rate, and the body surface area as inputs. For illustrative
purposes we added the cell’s formulae directly beside the
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Figure 1: Spreadsheet “Cardiogenic Shock Estimator”

spreadsheet where we introduced a fault in cell C6, which
should be B2-B3. Because of this bug the resulting cardiac
index is 72 instead of 2,160. Someone experienced in esti-
mating the cardiac index may easily detect this far too low
value but may not be able to specify the real expected out-
put value. Hence, means for specifying deviations from ex-
pected values in a qualitative way would be very valuable
for automated debugging.

In this paper, we follow this idea of using qualitative
representations for fault localization instead of real values.
Someone should also bear in mind that using values from
domains like integer or even reals in models for diagnosis
might not be feasible. For example, (Hofer et al. 2015) re-
ported that computing single faults took 25.1 seconds even
for smaller spreadsheets having up to 70 non-empty cells.
Hence, for larger spreadsheets representations used for diag-
nosis may hardly use quantitative models. Instead qualitative
models that are able to handle deviations, i.e., differences
between the expected and the observed value should be used
providing that such models come with a smaller computa-
tional footprint.

In the following, we define diagnosis based on con-
straint solving and introduce different models including a
value-based variant considering integer values, a depen-
dency model capturing information about the correctness
(or incorrectness) of certain values, and a model where we
are able to state whether a value is smaller, equivalent, or
larger than expected. The latter model we refer as compari-
son model. In addition to these models we discuss a frame-
work where we are able to compare models with respect to
diagnosis accuracy, which we define as the ability of a model
for reducing the diagnosis search space. Moreover, we in-
troduce a definition of abstraction that allows for compar-
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Figure 2: The d74 circuit

ing models. Afterwards, we present the first experimental
results when using the different models for diagnosis. The
results indicate that the comparison model, which we later
plan to use for debugging spreadsheets, has a good running
time performance and good diagnosis capabilities.

Basic definitions
In the following we introduce the basic definitions where
we rely on the classical definitions of model-based diagnosis
(Reiter 1987; de Kleer and Williams 1987) but adapt them to
fit to the underlying constraint-based representation of mod-
els. For illustration purposes we make use of the famous d74
circuit example depicted in Figure 2.

We first start defining constraints systems and their corre-
sponding constraint satisfaction problem. We define a con-
straint system as a tuple (V ARS,DOM,CONS) where
V ARS is a finite set of variables, DOM is a function
mapping each variable to its domain comprising at least
one element, and CONS a finite set of constraints. With-
out restricting generality we define a constraint c as a pair
((v1, . . . , vk), tl) where (v1, . . . , vk) is a tuple of variables
from V ARS, and tl a set of tuples (x1, . . . , xk) of values
where for each i ∈ {1, . . . , k}: xi ∈ DOM(vi). The set of
tuples tl represents allowed variable value combination. For
simplicity, we assume a function scope(c) for a constraint c
returning the tuple (v1, . . . , vk), and a similar function tl(c)
returning the set of tuples tl of c.

For example, the constraint representation MV B of the
d74 circuit to be used for diagnosis purposes has the follow-
ing variables:

V ARS =

{
a, b, c, d, e, f, g, x, y, z,

ab m1, ab m2, ab m3, ab a1, ab a2

}
In this set the variables ab X represent the fault sta-

tus of a component X , i.e., ab X is true if component
X is said to be abnormal and false, otherwise. The do-
main for the variables representing connection are inte-
gers: ∀w ∈ {a, b, c, d, e, f, g, x, y, z} : DOM(w) = W
and for the fault status we use Boolean values, i.e.: ∀w ∈
{ab m1, ab m2, ab m3, ab a1, ab a2} : DOM(w) =
{T, F}.

For each component, we have to introduce a constraint.
For the multiplication components M1, M2, M3, we have
the following constraints:

((ab M1|2|3, a, c, x), {(F, u, v, u · b)|u, v, w ∈ W} ∪
{(T, u, v, w)|u, v, w ∈W})

For the adders A1 and A2 we have similar constraints:
((ab A1|2, a, c, x), {(F, u, v, u + b)|u, v, w ∈ W} ∪

{(T, u, v, w)|u, v, w ∈W})
Note that both types of constraints indicate that in case

of a fault all possible value combinations may be observed
whereas for the correct behavior the respective restricting
relationship among the connections have to be fulfilled.

In order to define a constraint satisfaction problem, we
first introduce the concept of value assignments for vari-
ables. Given a constraint system (V ARS,DOM,CONS),
and variable v ∈ V ARS, then v = x with x ∈ DOM(v)
is a single assignment of a value x to the variable v. We fur-
ther say that a set of single assignments where there at the
maximum one single assignment for a variable as value as-
signment. A constraint c with scope (v1, . . . , vk) fulfills a
value assignment {. . . , v1 = x1, . . . , vk = xk, . . .}, if there
exists a tuple (x1, . . . , xk) in tl(c). Otherwise, we say that
such a value assignment contradicts the constraint.

A constraint satisfaction problem for a given constraint
system is the question whether a value assignment exists that
fulfills all given constraints. If there is such a value assign-
ment, then the constraint satisfaction problem is said to be
itself fulfilled.

For example, the value assignment a = 2, b = 2, c =
3, d = 3, e = 2, x = 6, y = 6, z = 6, f = 12, g =
12, ab M1 = F, ab M2 = F, ab M3 = F, ab A1 =
F, ab A1 = F fulfills all constraints of the d74 circuit con-
straint system, whereas a = 2, b = 2, c = 3, d = 3, e =
2, x = 6, y = 6, z = 6, f = 10, g = 12, ab M1 =
F, ab M2 = F, ab M3 = F, ab A1 = F, ab A1 = F does
not. Hence, the d74 constraint satisfaction system can be ful-
filled.

Solving a constraint satisfaction problem is basically a
search procedure for a value assignment that fulfills all con-
straints. This search for constraint systems having only con-
straints with finite tuple lists is well known to be exponen-
tial and its corresponding problem is well known to be NP-
complete. For details about algorithms and heuristics we re-
fer to interested reader to (Dechter 2003).

In the following we discuss the diagnosis problem and
show how constraint solving can be used to solve the classi-
cal diagnosis problem. According to (Reiter 1987) a diagno-
sis problem is a tuple (COMP,SD,OBS) where COMP
is a set of components, SD a logical sentence describ-
ing the behavior of the system, i.e., the system descrip-
tion, and OBS a set of observations. In out constraint
based representation of the diagnosis problem, we assume
a constraint representation of the system and additional con-
straints specifying the observations. The constraint represen-
tation of a diagnosis problem (or the diagnosis problem for
short) is a tuple (V ARS,DOM,CONS ∪ COBS) where
(V ARS,DOM,CONS) is a constraint representation of a
system comprising variables ab C for every component C
of the system, and COBS is the constraint representation of



all observations OBS.
For our d74 circuit, the constraint representation MV B

together with the constraint representation COBS =
{(a, b, c, d, e, f, g), {(2, 2, 3, 3, 2, 10, 12)}} specifying ob-
servations forms a diagnosis problem.

The results of a diagnosis problem, i.e., the diagnoses, are
subsets of the set of components COMP . We obtain these
subsets from the solutions of the corresponding constraint
problem via taking one value assignment that is a solution,
and putting all components C for which the corresponding
variable ab C is set to T into a set, i.e., if s is a solution
of the constraint representation of a diagnosis problem, then
its corresponding diagnosis is ∆s = {C|ab C = T ∈ s}.
When computing all solutions from the constraint represen-
tation, we obtain all possible diagnosis. As usual, we define
a diagnosis to be minimal if there exists no subset, which
is itself a diagnosis. Of course, we are always interested in
only computing minimal diagnosis in the most efficient way.

In the following we discuss briefly a diagnosis algorithm
that computes minimal diagnosis of increasing size. This
can be achieved via restricting the number of ab C vari-
ables to be set to true using constraints. In this way we are
able to compute diagnoses up to a pre-specified size. The
necessary additional constraints are added during diagnosis
computation in diagnosis algorithms like ConDiag. (Nica
and Wotawa 2012) introduced the ConDiag algorithm that
computes minimal diagnoses up to a predefined size using
a constraint representation of the diagnosis problem. (Nica
et al. 2013) compared ConDiag with other diagnosis algo-
rithms showing a good overall runtime. In order to be self-
contained we briefly discuss the ConDiag algorithm, which
is given in Algorithm 1.

Algorithm 1 ConDiag((V ARS,DOM,CONS ∪
COBS), COMP, n)

Input: A constraint model (V ARS,DOM,CONS ∪
COBS) of a system having components COMP and the
desired diagnosis cardinality n
Output: All minimal diagnoses up to the predefined
cardinality n

1: Let DS be {}
2: Let M be CONS ∪ COBS
3: for i = 0 to n do
4: CM = M∪{|{abC |C ∈ COMP ∧ abC = T}| = i}
5: S = P (CSolver(V ARS,DOM,CM))
6: if i is 0 and S is {{}} then
7: return S
8: end if
9: Let DS be DS ∪ S.

10: M = M ∪ {¬(C(S))}
11: end for
12: return DS

The ConDiag algorithm computes diagnoses starting
with cardinality 0 to the predefined size n that has to be
provided as parameter. In each step, we are searching for
solutions that have exactly a size of i (Step 4). All these so-

lutions are added to the set of solutions in Step 9. In order
to prevent the computation of non-minimal diagnoses addi-
tional constraints saying that we are not interested in super-
set diagnoses are added (see Step 10). ConDiag returns all
minimal diagnoses up to size n and the empty diagnosis if
the system works as expected.

When using ConDiag on the MV B model of the d74 cir-
cuit, we obtain two single fault diagnoses {M1} and {A1}
and two double fault diagnoses {M2, A2} and {M2,M3}.

Qualitative models for diagnosis
In the previous section we illustrated the basic definitions
using the quantitative model of the d74 circuit MV B based
on constraints over integer values. In order to speed up the
diagnosis computation especially for large systems compris-
ing thousands of components, we have to use appropriate
abstractions. In software debugging data and control depen-
dencies can be used for this purpose like in program slicing
(Weiser 1982). Based on static slices (Friedrich, Stumptner,
and Wotawa 1999) developed a model that could be easily
integrated into model-based diagnosis, and which was later
proved to be equivalent to program slicing (Wotawa 2002).

All these abstractions are not abstractions in the sense of
homomorphic functions applied to a quantitative space in
order to obtain a qualitative representation. Instead these
abstractions introduce the idea of classifying variables or
values of connection between components to be either cor-
rect or incorrect in a particular diagnosis problem. Hence,
instead of using particular values, e.g., from the integer
domain, the dependency-based models use classifications,
which are based on deviations between the actual and the
expected behavior. For a very detailed analysis of such de-
viation models in the context of diagnosis we recommend to
consult (Struss 2004).

In the following, we discuss two dependency-based mod-
els, and show how they can be represented using constraints.
We start with the dependency-based model of (Friedrich,
Stumptner, and Wotawa 1999) we call Morig

D . There the au-
thors introduce a model of a component C having m inputs
and one output. This models states that the output can only
be correct, if the component is correct and all inputs have a
correct value, i.e.: ¬abC → (

∧m
i ini = ok → out = ok).

In the case the component is correct, but one input is not, the
output may be correct or not correct. In the case of a faulty
component, there is no way of determining the correctness
status of the output from any correctness information of the
input. When taking this thoughts into consideration, then we
obtain the following table constraint for a component C with
n = 2 inputs.

ab C in1 in2 out
F ok ok ok
F ¬ok ok ok
F ok ¬ok ok
F ¬ok ¬ok ok
F ¬ok ok ¬ok
F ok ¬ok ¬ok
F ¬ok ¬ok ¬ok
T . . .



In this table and also the following ones a ′.′ stands for
any possible value. Hence a row with ′.′ represents multiple
rows when changing the placeholder ′.′ with possible values.

If we use this component model for all compo-
nents of the d74 circuit from Figure 2 and fur-
ther set the observations as follows COBS =
{(a, b, c, d, e, f, g), {(ok, ok, ok, ok, ok,¬ok, ok}}, which
represent the observations used for diagnosing the d74 in the
previous section, then we obtain the following three minimal
diagnoses: {M1}, {M2}, and {A1}. When comparing this
result with the previous one we see that when considering
integers, we have two diagnoses which are supersets of
{M2}. Hence, when considering dependencies only we
lose some information, which leads to a larger search space
of potential diagnoses including all their supersets.

The underlying reason for this decrease in precision of di-
agnosis is that the model does not consider the case where
a faulty value does not propagate through the whole system.
For example, if we consider a logical and gate and we know
that one input is false, then the other input does no longer
determine the value of the output. Hence, any faulty value
occurring will never be visible on sider of the output. This
behavior is named coincidental correctness in software de-
bugging and always influences the fault localization capabil-
ities.

In order to handle coincidental correctness using a
dependency-based model, we have to distinguish two cases:
(1)There are component where coincidental correctness may
occur, e.g., for logical gates. (2) There are other cases, where
coincidental correctness is at least very unlikely, e.g., when
considering a function for adding two integers. In the latter
case, we can state that a correct output value for a work-
ing component also implies that all inputs are working, i.e.,
¬abC → (

∧m
i ini = ok ↔ out = ok). (Hofer and

Wotawa 2014) introduced this improved model for debug-
ging Spreadsheet programs handling coincidental correct-
ness we call MCC

D . The constraint representation of a two
inputs component takes care of the bi-implication used in
the component model, which is only allowed to be used if
no coincidental correctness may occur.

ab C in1 in2 out
F ok ok ok
F ¬ok ok ¬ok
F ok ¬ok ¬ok
F ¬ok ¬ok ¬ok
T . . .

When using the model MCC
D for diagnosing the d74 cir-

cuit and the previously used set of observations, we obtain
again two single fault diagnoses {M1}, {M2} and also one
double fault diagnosis {M1, A2}. The other double fault
diagnosis {M2,M3} is missing. The reason here is that
this model is not able to handle the case that two faulty
inputs may lead to a correct output, which might happen
even for operations on integer domains. Adding the tuple
(F,¬ok,¬ok, ok) to the table solves this issue. In the fol-
lowing we refer to the model MCC

D extended with the tuple
as MD.

The dependency-based models discussed can be seen as
the most abstract form of deviation model only considering
values to be either correct (i.e., ok) or incorrect (i.e. ¬ok). A
less abstract model may allows to distinguish cases where a
value is smaller, equivalent, or larger than an expected value.
In the following we discuss such a model and introduce ab-
straction formally in order to allow comparing such models
with others.

When dealing with comparisons like smaller <, equiva-
lent =, or larger >, we have to introduce tabular constraints
for the different operators. In case of multiplication and ad-
dition, the constraints are the same but for others like sub-
traction adaptation for capturing the different semantics are
necessary. In the following table we summarize the con-
straints handling the behavior of addition and multiplication
components. There we state that in case of equivalent inputs
we also obtain an output value with no deviation. In case one
input is smaller (or larger) and the other is equivalent, the
output also is expected to be smaller (or larger respectively).
In case we have one smaller and one larger input value, we
cannot say anything about the output. Hence, in such a case
all output values may occur. If the operator (or component)
is said to be faulty, all combinations of values are possible.

ab C in1 in2 out
F = = =
F < = <
F = < <
F < < <
F > = >
F = > >
F > > >
F < > =
F < > <
F < > >
F > < =
F > < <
F > < >
T . . .

We call the comparison model based on such a table MC .
Obviously, the deviation model based on comparison

gives additional information for the diagnosis process. How-
ever, the question is whether there is an improvement of the
accuracy of the obtained diagnosis.

Let us start with continuing the d74 example. From the
value-based model we obtain the following observations:

a b c d e f g
= = = = = < =

This together with the model for the components
M1,M2,M3, A1, A2 allows for computing again 2 single
fault diagnoses {M1} and {A1}, and the 2 double fault di-
agnoses {M2,M3} and {M2, A2}. Hence, there is no im-
provement in accuracy for this example.

If we change the observations, i.e., assuming g = 10 and
f = 14 the situation changes. The value-based model al-
lows for computing no single fault but 8 double fault di-
agnoses: {M1,M2}, {M1,M3}, {M1, A2}, {M2,M3},



{M2, A1}, {M2, A2}, {M3, A1}, and {A1, A2}. The
same diagnoses can be obtained when using the more ac-
curate deviation model and the observations:

a b c d e f g
= = = = = < >

In case of the both the original and the improved
dependency-based model we obtain one single fault di-
agnosis {M2}, and 4 double fault diagnoses {M1,M3},
{M1, A2}, {M3, A1}, and {A1, A2}. Hence, we see that
the more abstract deviation models lead to the computation
of less accurate diagnoses in some cases. We depict the di-
agnosis search space that includes the minimal diagnoses as
well as all of their supersets in Figure 3.

In the next section we introduce abstraction and diagnosis
accuracy formally, and further more discuss their relation-
ship in detail.

Domain abstraction
We start with defining abstraction formally.
Given two constraint models for diagnosis
M1 = (V ARS,DOM1, CONS1 ∪ COBS1) and
M2 = (V ARS,DOM2, CONS2 ∪ COBS2). We say that
M1 is more abstract than M2, i.e., M1 ≺M2, if there exists
a function h : DOM2 7→ DOM1 that makes the constraints
equivalent, i.e., ∀c1 ∈ CONS1 ∪ COBS1 and c2 ∈
CONS2 ∪ COBS2 having the same scope, h(c2) = c1.

For this definition of abstraction, we use the fol-
lowing definition of the application of a function f
on a constraint ((v1, . . . , vk), tl): f(((v1, . . . , vk), tl)) =
((v1, . . . , vk), f(tl)) where f is defined on tuple list as fol-
lows: f(tl) = {(f(x1), . . . , f(xk))|(x1, . . . , xk) ∈ tl}.

From our running d74 example using the function h de-
fined as h(=) = ok, h(<) = ¬ok, and h(>) = ¬ok we
can easily check that the improved dependency-based model
considering coincidental correctness MD is more abstract
than the comparison-based model MC , i.e., MD ≺MC . It is
worth noting that there is no such function h for the original
dependency-based model and the original model handling
coincidental correctness.

From the definition of ≺ the definition of model equiv-
alence follows immediately. Let M1 and M2 are constraint
models for diagnosis. M1 and M2 are equivalent, i.e., M1 ≡
M2, if and only if M1 ≺ M2 and M2 ≺ M1. Obviously, if
the same function h can be used to show that M1 ≺M2 and
M2 ≺M1, then h has to be a bijective function.

In the following we define diagnosis accuracy. For this
purpose, we bear in mind that in case of pure consistency-
based diagnosis, all supersets of minimal diagnoses are also
diagnoses. This is ensured in all cases where we only be
aware of the behavior of a correct component but do not
know a component’s incorrect behavior. If we use models
of the faulty behavior minimal diagnoses are not character-
izing all possible diagnoses anymore. See (de Kleer, Mack-
worth, and Reiter 1992) for a detailed discussion on this
topic. In this paper we assume models that capture the cor-
rect behavior only. Hence, we know that all possible diag-
nosis can be characterized as follows. Let ∆-MIN be the set
of all minimal diagnoses obtained from a constraint model

M = (V ARS,DOM,CONS ∪ COBS). The set of all
diagnoses comprises the minimal diagnoses and all of their
supersets, i.e., ∆-SETM = {∆|∃∆′ ∈ ∆-MIN : ∆ ⊇ ∆′}.
Thus ∆-SETM spans the whole search space of diagnosis.
Using this definition we are able to define accuracy as the
ability of a model M to come up with the smallest possi-
ble set ∆-SETM . To compare two constrain models used for
diagnosis, we only need to compare their search spaces.

Given two constraint models for diagnosis
M1 = (V ARS,DOM1, CONS1 ∪ COBS1) and
M2 = (V ARS,DOM2, CONS2 ∪ COBS2). We say
that M1 is less accurate than M2, i.e., M1 ≺A M2, iff
∆-SETM1 ⊃ ∆-SETM2 . M1 is as accurate as M2, i.e.,
M1 P M2, iff ∆-SETM1 = ∆-SETM2 . M1 is less or
equal accurate M2, i.e., M1 �A M2, iff M1 P M2 or
M1 ≺A M2.

When considering the search spaces for diagnosing the
d74 circuit given in Figure 3 we see that the model MD is
less accurate than MC , i.e., MD ≺A MC .

In the following theorem we manifest the relationship be-
tween abstraction and diagnosis accuracy.

Theorem 1. Given two constraint models for diagnosis
M1 = (V ARS,DOM1, CONS1 ∪ COBS1) and M2 =
(V ARS,DOM2, CONS2 ∪ COBS2). If M1 is more ab-
stract than M2, then M1 is less or equal accurate than M2,
i.e., M1 ≺M2 →M1 �A M2.

Proof. To prove the theorem we first assume that we
have two models M1 and M2 where M1 ≺ M2. From
this follows that there exists a function h, which maps
the elements of DOM2 to elements of DOM1 such
that the tuple sets for each component becomes equiv-
alent using only elements from DOM1. What we have
to proof is that ∆-SETM1 ⊇ ∆-SETM2 , i.e., for all
∆ ∈ ∆-SETM2 it follows that ∆ ∈ ∆-SETM1 . We
prove this by contradiction. Let ∆ be in∆-SETM2 but
∆ 6∈ ∆-SETM1 . Because ∆ ∈ ∆-SETM2 we know
that the constraint model (V ARS,DOM2, CONS2 ∪
COBS2 ∪ ((∆), {(T, . . . , T )})) is satisfiable. Because
of the definition of ≺ we would get a corresponding
constraint model (V ARS,DOM1, CONS1 ∪ COBS1 ∪
((∆), {(T, . . . , T )})) when applying h to the con-
straints. Note that h has no effect on the constraint
((∆), {(T, . . . , T )}). But this constraint system has to be
also satisfiable because of the construction of h. Hence, ∆
is also element of ∆-SETM1 contradiction our assumption,
and the theorem hold.

Note that a more abstract model does not cause less accu-
rate diagnoses in all cases. For the d74 example, we saw that
depending on the observations we obtain the same or a less
accurate diagnosis for the more abstract model MD when
compared to MC . It is also worth noting that the definition
of more or less accurate can also be used independently from
abstraction.

From Theorem 1 we obtain the following lemma, which
states that equivalent models also have an equivalent diag-
nosis accuracy.
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Figure 3: The diagnosis search space for the d74 circuit and assuming both outputs to behave incorrectly, i.e., f = 10 and
g = 14. The dotted line shows the search space for the improved dependency-based model handling coincidental correctness
whereas the solid line indicates the search space for both the value-based and the comparison-based model.

Lemma 1. Let M1 and M2 be equivalent models, i.e., M1 ≡
M2, then M1 and M2 have the same diagnosis accuracy, i.e.,
M1 ≡M2 →M1 P M2.

Proof. The lemma follows directly from Theorem 1 and the
definition of equal diagnosis accuracy.

Obviously, there might be cases where two models have
the same accuracy but there is no mapping between model
elements. Hence, we are not allowed to conclude model
equivalence from equal diagnosis accuracy.

Experimental results
In order to motivate the use of qualitative models for diagno-
sis we carried out some experiments based on a parametriz-
able circuit comprising components for adding and multi-
plying integers. Our underlying research questions are: (1)
whether the discussed qualitative models decrease the run-
ning time of diagnosis compared to a model based on integer
values, and (2) whether the accuracy of diagnosis does not
decrease substantially.

For generating a parametrizable circuit we implemented
a circuit generator having 2 parameters: (1) the number of
components directly connected to the inputs, and (2) the
number of outputs. The generator constructs the circuit level
by level, where in each level the number of components
is reduced by 1. We stop at a level where the number of
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Figure 4: A generated circuit having 5 components directly
connected to the inputs and 2 outputs.

components is equivalent to the wanted number of outputs.
We further assume that each component is either a compo-
nent for adding two integers or multiplying two integers.
The functionality of each component changes at every level.
Components from level i are only connected to components
from level i + 1 where two components of i + 1 share
one output of a component of level i. For example, in Fig-



ure 4 we depict the circuit, which can be generated using 5
components in level 1 and 2 outputs. Obviously, the num-
ber of inputs is always n + 1 if n is the number of com-
ponents in the first level, and the number of wanted out-
puts k has to fulfill equation n ≥ k ≥ 1. For the experi-
ment, we use the values 2 and 3 in an alternating way and
computed the expected outputs when constructing the cir-
cuit. The implementation of the circuit generator return a
value-based, an improved functional dependency model, and
a comparison model of the circuit using the parameters. All
the models can be executed using the Minion (Gent, Jef-
ferson, and Miguel 2006) constraint solver. For the exper-
iments we used the latest Minion Version 1.8 (available at
http://constraintmodelling.org/).

In the experiment we generated 6 smaller circuits with
2 . . . 7 components in the first level and exactly two outputs.
We named the circuit c22, c32, . . . , c72. The purpose of this
experiment was to compare the diagnosis results and the run-
ning time for computing all single fault diagnosis using our
3 models, i.e.: the value-based model MV B , the improved
functional dependency based one MD, and the comparison
model MC . Besides the predefined inputs, which are either 2
or 3 for MV B and ok for the other models, we assumed every
output except the last one at the bottom of the circuit to be
correct. For the last output we set its value to 0 (for MV B),
to ¬ok for MD, and to < for MC . In Table 1 we summarize
the obtained results when running the search for single fault
diagnoses on a MacBook Pro, 2,8 GHz Intel Core i7, 16 GB
memory, and OS X version 10.11.3.

Note that for the value based model we used a integer
domain ranging from -300 to 300 in order to compute the
diagnoses. From Table 1 we see that even for small circuit
there is a substantially larger running time when using MV B

compared to the other models. It is worth noting that with the
given integer domain range the circuits c62 and c72 cannot
be solved using MV B . Moreover, the functional dependency
model MD produces many more diagnoses than both other
models. The reason here is the introduction of a tuple in the
constraint table that allows for masking faults in case of two
wrong input values and the highly interconnected structure
of the circuits. The best model in terms of running time and
diagnosis accuracy is MC . It is also interesting to see that
for the slightly larger circuits computing diagnoses within
10 seconds was not possible when using MV B . In order to
complete the first experiments we further studied the influ-
ence of the used integer domain to the running time of di-
agnosis when using the value-based model. See Figure 5 for
the results. When considering the logarithmic scale we see
an exponential increase of running time when doubling the
space of integers. Hence, for larger numbers diagnoses us-
ing MV B becomes infeasible and that even for very small
systems.

The results show that qualitative models for expressing
the propagation of deviations from expected values are very
valuable for diagnosis purposes. The introduced compari-
son model MC provides a good diagnosis running time and
accuracy especially when compared with the functional de-
pendency model MD.
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Figure 5: Minimum running time in seconds as a function of
the size of the used integer domain.

Related research

The idea of using abstraction for diagnosis and in particular
model-based diagnosis (Reiter 1987; de Kleer and Williams
1987) is not new. Initial work including (Mozetič 1991) and
later (Autio and Reiter 1998) discussed the concept of struc-
tural abstraction, where sets of interconnected components
are mapped to one component. The behavior of such a com-
ponent is given using the sets of interconnected components.
When using such an abstraction, we obtain a hierarchical
model, where a component model in one level is given us-
ing the structure and behavior of the corresponding inter-
connected components. (Autio and Reiter 1998) discussed
the resulting properties of such an approach in detail.

(Struss 1992) discussed modeling including abstraction
and refinement in very much detail. (Sachenbacher and
Struss 2003; 2005) introduced a different abstraction ap-
proach where quantitative domains are mapped to qualitative
ones considering value boundaries influencing the behavior
of the system. Such boundaries depend on the given diag-
nosis problem. Therefore, the authors suggested to use an
automated abstraction approach for solving this issue.

In contrast, to these previous papers, we focus on devi-
ation models for diagnosis and state a theory allowing to
compare them using the introduced definition of abstraction,
which is close to (Struss 1992). Although, we used exam-
ple from classical hardware diagnosis to illustrate the con-
cepts, we are driven by the idea of coming up with auto-
mated debuggers for programs. There qualitative represen-
tations seems to be very useful and appropriate.

It is also worth mentioning other work related to ab-
straction of programs. (Cousot and Cousot 1977) introduced
the concept of program abstraction providing a theoretical
framework. The focus of (Cousot and Cousot 1977) was on
the execution part and there the consequences of introducing
abstraction. In our work, the focus is on fault localization
and deviation models.



Circuit MV B MD MC

name comps singl. f. min. T avg. T max T singl. f. min. T avg. T max T singl. f. min. T avg. T max T
c22 2 1 0.000020 0.000026 0.000035 1 0.000018 0.000024 0.000031 1 0.000018 0.000024 0.000033
c32 5 2 0.000113 0.000172 0.000258 2 0.000051 0.000060 0.000075 2 0.000051 0.000066 0.000081
c42 9 3 0.005931 0.006842 0.009888 4 0.000093 0.000121 0.000144 3 0.000084 0.000119 0.000147
c52 14 4 0.006591 0.006940 0.007364 7 0.000163 0.000200 0.000241 4 0.000169 0.000194 0.000213
c62 20 - - - - 16 0.000313 0.000417 0.000479 5 0.000272 0.000306 0.000344
c72 27 - - - - 42 0.000679 0.000882 0.000966 6 0.000411 0.000462 0.000561

Table 1: Empirical diagnosis results obtained for the different models. Besides the number of diagnoses, the minimum, average,
and maximum running time in seconds for every model is given.

Conclusions
In this paper we formalized diagnosis as constraint satis-
faction problem and introduced deviation models for fault
localization. In addition, we discussed a framework that al-
lows for comparing different models and to state whether
one model is an abstraction of another model. Moreover, we
present first empirical results showing that a deviation model
based on the qualitative values smaller, equivalent, or larger
behaves similar to a representation based on concrete values.
The obtained running time for computing single fault diag-
nosis is also very much promising and may raise its usability
for fault localization in programs.

The empirical evaluation is of course limited and has to
be extended in the future. Moreover, it is planned to use the
comparison model MC in the domain of fault localization
of spreadsheets, where a fast response time is required even
in cases of large spreadsheets comprising hundreds of non-
empty cells. There we expect that the use of qualitative de-
viation models improves fault localization substantially.

Acknowledgments
The work described in this paper has been been funded
by the Austrian Science Fund (FWF) project DEbugging
Of Spreadsheet programs (DEOS) under contract number
I2144 and the Deutsche Forschungsgemeinschaft (DFG) un-
der contract number JA 2095/4-1.

References
Autio, K., and Reiter, R. 1998. Structural abstraction in
model-based diagnosis. In Proceedings of the European
Conference on Artificial Intelligence (ECAI).
Cousot, P., and Cousot, R. 1977. Abstract interpreation:
A unified lattice model for static analysis of programs by
construction of approximation of fixpoints. In in Proc.
POPL’77, 238–252. Los Angeles: ACM.
de Kleer, J., and Williams, B. C. 1987. Diagnosing multiple
faults. Artificial Intelligence 32(1):97–130.
de Kleer, J.; Mackworth, A. K.; and Reiter, R. 1992. Char-
acterizing diagnosis and systems. Artificial Intelligence 56.
Dechter, R. 2003. Constraint Processing. Morgan Kauf-
mann.
Friedrich, G.; Stumptner, M.; and Wotawa, F. 1999. Model-
based diagnosis of hardware designs. Artificial Intelligence
111(2):3–39.

Gent, I. P.; Jefferson, C.; and Miguel, I. 2006. Minion:
A fast, scalable, constraint solver. In Proceedings of the
17th European Conference on Artificial Intelligence (ECAI
2006).
Hofer, B., and Wotawa, F. 2014. Why does my spread-
sheet compute wrong values? In Proceedings of the Interna-
tional Symposium on Software Reliability Engineering (IS-
SRE), volume 25, 112 –121.
Hofer, B.; Wotawa, F.; Abreu, R.; and Außerlechner, S.
2015. Testing for distinguishing repair candidates in spread-
sheets - the mussco approach. In 27th International Confer-
ence on Testing Software and Systems (ICTSS), 124–140.
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