

Qualitative deviation models vs. quantitative models for fault localization in spreadsheets

Birgit Hofer, Iulia Nica, and Franz Wotawa Graz University of Technology

Spreadsheet Errors

JPMorganChase 🛑

~ 300 million EUR damage

Spreadsheet Errors

Paper published by Reinhart & Rogoff

Many governments used it for decisions

Immense loss of reputation

	А	В	1	J	K	L	М
2				Real GDP growth			
3				Debt/GDP			
4	Country	Coverage	30 or less	30 to 60	60 to 90	90 or above	30 or less
26			3,7	3,0	3,5	1,7	5,5
27	Minimum		1,6	0,3	1,3	-1,8	0,8
28	Maximum		5,4	4,9	10,2	3,6	13,3
29							
30	US	1946-2009	n.a.	3,4	3,3	-2,0	n.a.
31	UK	1946-2009	n.a.	2,4	2,5	2,4	n.a.
32	Sweden	1946-2009	3,6	2,9	2,7	n.a.	6,3
33	Spain	1946-2009	1,5	3,4	4,2	n.a.	9,9
34	Portugal	1952-2009	4,8	2,5	0,3	n.a.	7,9
35	New Zealand	1948-2009	2,5	2,9	3,9	-7,9	2,6
36	Netherlands	1956-2009	4,1	2,7	1,1	n.a.	6,4
37	Norway	1947-2009	3,4	5,1	n.a.	n.a.	5,4
38	Japan	1946-2009	7,0	4,0	1,0	0,7	7,0
39	Italy	1951-2009	5,4	2,1	1,8	1,0	5,6
40	Ireland	1948-2009	4,4	4,5	4,0	2,4	2,9
41	Greece	1970-2009	4,0	0,3	2,7	2,9	13,3
42	Germany	1946-2009	3,9	0,9	n.a.	n.a.	3,2
43	France	1946-2022	4,9	2,7	3,0	n.a.	5,2
44	Finland	1946-2023	3,8	2,4	5,5	n.a.	7,0
45	Denmark	1946-2024	3,5	1,7	2,4	n.a.	5,6
46	Canada	1946-2025	1,9	3,6	4,1	n.a.	2,2
47	Belgium	1946-2026	n.a.	4,2	3,1	2,6	n.a.
48	Austria	1946-2027	5,2	3,3	-3,8	n.a.	5,7
49	Australia	1946-2028	3,2	4,9	4,0	n.a.	5,9
50							
51			4,1	2,8	2,8	=AVERAGE(L	30:L44)
52							

Running Example

Α

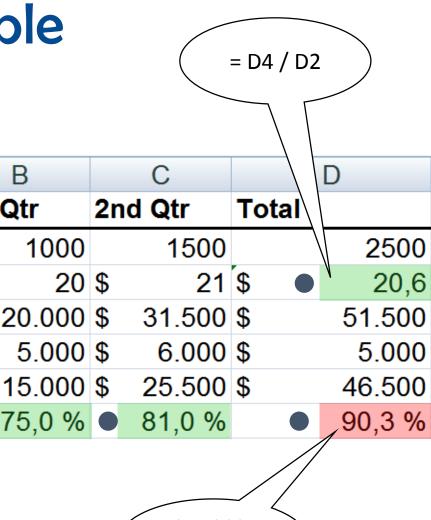
Item

Units Sold

ASP/Unit

Expenses

Sales Revenue


Operating Income

Op Income in %

2

3

6

Should be 78.6%

This is a simplified version of the homework/Budgetone spreadsheet from the EUSES Spreadsheet Corpus

B

1000

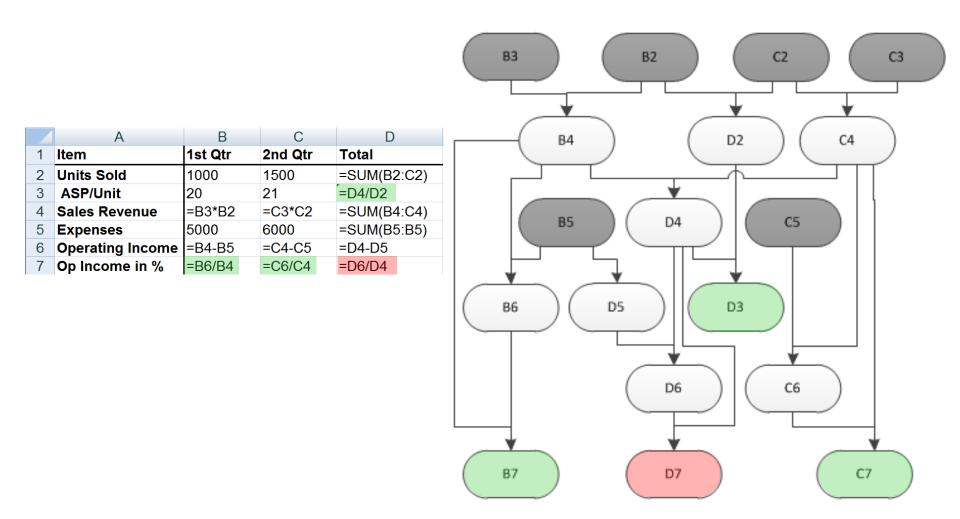
20.000 \$

75,0 %

20 \$

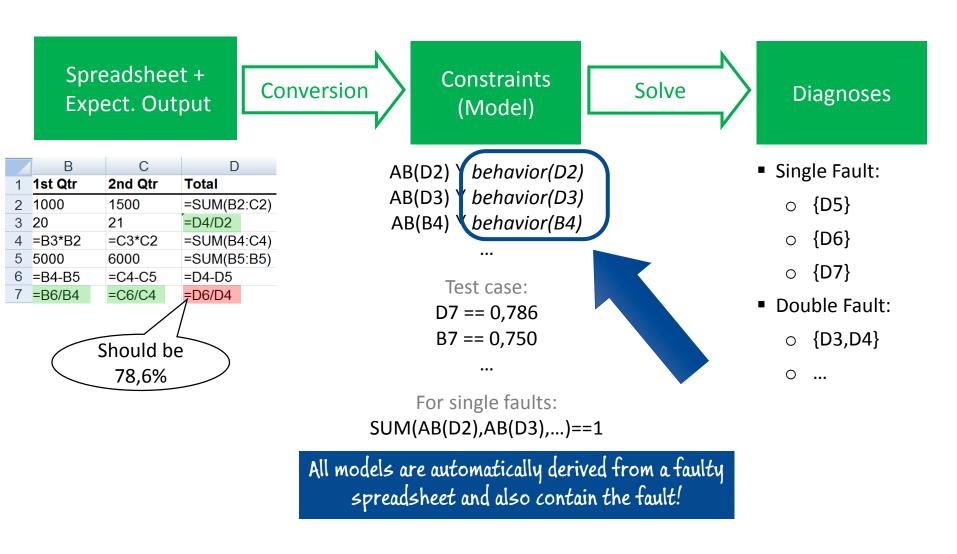
5.000 \$

1st Qtr


\$

\$

Running Example – Formula View


	А	В	С	D
1	Item	1st Qtr	2nd Qtr	Total
2	Units Sold	1000	1500	=SUM(B2:C2)
3	ASP/Unit	20	21	=D4/D2
4	Sales Revenue	=B3*B2	=C3*C2	=SUM(B4:C4)
5	Expenses	5000	6000	=SUM(B5:B5)
6	Operating Income	=B4-B5	=C4-C5	=D4-D5
7	Op Income in %	=B6/B4	=C6/C4	=D6/D4

Running Example - Dependency Graph

This is a simplified version of the homework/Budgetone spreadsheet from the EUSES Spreadsheet Corpus

Model-Based (Software) Debugging

Models for a Spreadsheet's Behavior

Value-based

$$D2 = B2 + C2$$

$$D3 = D4 / D2$$

Dependency-based

$$ok(B2) \land ok(C2) \rightarrow ok(D2)$$

$$ok(D4) \land ok(D2) \rightarrow ok(D3)$$

	А	В	С	D
1	Item	1st Qtr	2nd Qtr	Total
2	Units Sold	1000	1500	=SUM(B2:C2)
3	ASP/Unit	20	21	=D4/D2
4	Sales Revenue	=B3*B2	=C3*C2	=SUM(B4:C4)
5	Expenses	5000	6000	=SUM(B5:B5)
6	Operating Income	=B4-B5	=C4-C5	=D4-D5
7	Op Income in %	=B6/B4	=C6/C4	=D6/D4

Models for a Spreadsheet's Behavior

Value-based

$$D2 = B2 + C2$$

$$D3 = D4 / D2$$

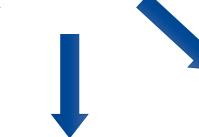
- + exact, few diagnoses
- computation time
- Reals: lacking support

Dependency-based

 $ok(B2) \land ok(C2) \rightarrow ok(D2)$

 $ok(D4) \land ok(D2) \rightarrow ok(D3)$

- + fast
- + only Boolean
- many diagnoses


Models for a Spreadsheet's Behavior

Value-based

D2 = B2 + C2

D3 = D4 / D2

Dependency-based

 $ok(B2) \land ok(C2) \rightarrow ok(D2)$

 $ok(D4) \land ok(D2) \rightarrow ok(D3)$

Comparison-based

 $eq(B2)/eq(C2) \rightarrow eq(D2)$

 $gt(B2) \land eq(C2) \rightarrow gt(D2)$

• • •

	А	В	С	D
1	Item	1st Qtr	2nd Qtr	Total
2	Units Sold	1000	1500	=SUM(B2:C2)
3	ASP/Unit	20	21	=D4/D2
4	Sales Revenue	=B3*B2	=C3*C2	=SUM(B4:C4)
5	Expenses	5000	6000	=SUM(B5:B5)
6	Operating Income	=B4-B5	=C4-C5	=D4-D5
7	Op Income in %	=B6/B4	=C6/C4	=D6/D4

Comparison-based Modeling

ABNORMAL	in1	in2	out
False	=	=	=
False	<	=	<
False	=	<	<
False	<	<	<
False	>	=	>
False	=	>	>
False	>	>	>
False	<	>	?
False	>	<	?
True	?	?	?

ABNORMAL	in1	in2	out
False	=	=	=
False	<	=	<
False	=	<	>
False	<	<	?
False	>	=	>
False	=	>	<
False	>	>	?
False	<	>	<
False	>	<	>
True	?	?	?

Practical Realization with Minion 1

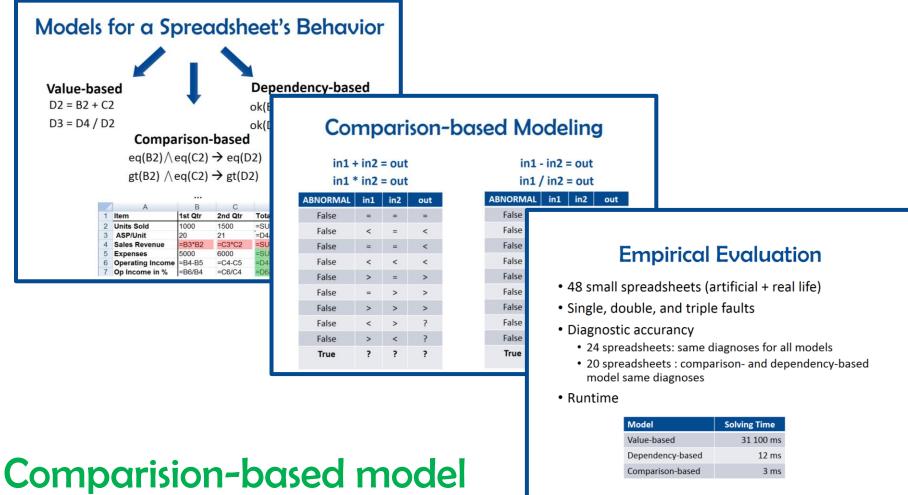
```
MINION 3
                                     **TUPLELIST**
                                                         67 minusDivFunction 40 4
   # Modeling the domain = > <
                                 25 plusMultFunction 40 4
                                                         68 0 1 1 1
   # Values: 0 < / 1 = / 2 >
                                 26 0 1 1 1
                                                         69 0 2 1 2
                                 27 0 2 1 2
 4
                                 28 0 1 2 2
   **VARIABLES**
                                 29 0 2 2 2
   DISCRETE Sheet1 F4{0..2}
                                                         72 0 2 2 1
                                 30 0 0 1 0
   DISCRETE Sheet1 F3{0..2}
                                                         73 0 2 2 2
   DISCRETE tmp3{0..2}
   DISCRETE tmp3{U..2}
DISCRETE Sheet1_H3{0..2}
                                                         74 0 0 1 0
                                 32 0 0 0 0
                                 33 0 0 2 0
   DISCRETE Sheet1_B4{0..2}
10
                                34 0 0 2 1
                                 35 0 0 2 2
   DISCRETE Sheet1 D6{0..2}
11
                                                         78 0 0 0 2
                                 36 0 2 0 0
12
   DISCRETE Sheet1 B3{0..2}
                                                         79 0 0 2 0
                                 37 0 2 0 1
   DISCRETE Sheet1 D5{0..2}
13
                                                         80 0 2 0 2
                                 38 0 2 0 2
   DISCRETE Sheet1 D4{0..2}
14
                                                         81 1 0 0 0
                                 39 1 0 0 0
   DISCRETE Sheet1 D3{0..2}
15
                                                         82 1 0 0 1
                                 40 1 0 0 1
   DISCRETE Sheet1 F5{0..2}
16
                                                         83 1 0 0 2
                                 41 1 0 0 2
17
   DISCRETE tmp0{0..2}
                                                         84 1 1 0 0
                                 42 1 1 0 0
   DISCRETE Sheet1 B8{0..2}
18
                                                         85 1 1 0 1
                                 43 1 1 0 1
   DISCRETE Sheet1_B7{0..2}
                                                         86 1 1 0 2
19
                                 44 1 1 0 2
                                                         87 1 2 0 0
                                 45 1 2 0 0
20
   DISCRETE Sheet1 B6{0..2}
                                                         88 1 2 0 1
                                 46 1 2 0 1
   DISCRETE Sheet1_B5{0..2}
21
                                                         89 1 2 0 2
                                 47 1 2 0 2
   DISCRETE tmp9{0..2}
22
                                                         90 1 0 1 0
                                 48 1 0 1 0
23
   BOOL ab[8]
                                                         91 1 0 1 1
                                 49 1 0 1 1
                                                         92 1 0 1 2
                                     1 0 1 2
                                                         93 1 0 2 0
                                 51 1 0 2 0
                                                         94 1 0 2 1
                                 52 1 0 2 1
                                                         95 1 0 2 2
                                     1 0 2 2
```

E/ 1 1 1 0

96 1 1 1 0

Practical Realization with Minion 2

```
123
     **SEARCH**
124
    VARORDER [ab]
125
    PRINT [ab]
126
127
    **CONSTRAINTS**
128
    # System description
129
    table([ab[4], Sheet1 D4, Sheet1 D5, Sheet1 F4], plusMultFunction)
130
     table([ab[1], Sheet1 D3, Sheet1 D4, Sheet1 F3], plusMultFunction)
     table([ab[3], Sheet1 B4, Sheet1 B6, Sheet1 D4], plusMultFunction)
131
132
     table([ab[5], Sheet1 B7, Sheet1 B8, Sheet1 D5], plusMultFunction)
133
     table([ab[6], Sheet1 D5, Sheet1 D6, Sheet1 F5], plusMultFunction)
134
     table([ab[7],Sheet1 B8,Sheet1 B6,tmp9], plusMultFunction)
     table([ab[0], Sheet1 B3, Sheet1 B4, tmp0], plusMultFunction)
135
136
     table([ab[7],tmp9,Sheet1 B4,Sheet1 D6], plusMultFunction)
     table([ab[2], Sheet1 F3, Sheet1 F4, tmp3], minusDivFunction)
137
138
     table([ab[2],tmp3,Sheet1 F5,Sheet1 H3], minusDivFunction)
139
     table([ab[0],tmp0,Sheet1 B5,Sheet1 D3], plusMultFunction)
140
    # TEST CASE / Observations
141
142
    eq(Sheet1 B8,1)
    eq(Sheet1 B7,1)
143
144
    eq(Sheet1 B6,1)
145
    eq(Sheet1 H3,0)
146
    eq(Sheet1 B3,1)
     eq(Sheet1 B4,1)
147
148
     eq(Sheet1 B5,1)
149
150
    #SIZE OF SOLUTION
151
     watchsumgeg(ab, 1)
152
     watchsumleg(ab, 1)
153
     **EOE**
```


Empirical Evaluation

- 48 small spreadsheets (artificial + real life)
- Single, double, and triple faults
- Diagnostic accurancy
 - 24 spreadsheets: same diagnoses for all models
 - 20 spreadsheets: comparison- and dependency-based model same diagnoses

Runtime

Model	Solving Time		
Value-based	31 100 ms		
Dependency-based	12 ms		
Comparison-based	3 ms		

Summary and Conclusion

- Short solving time
- Good diagnostic accurancy

→ Useful in practice